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THEORY OF REPRODUCING KERNELS0) 
BY 

N. ARONSZAJN 

PREFACE 

The present paper may be considered as a sequel to our previous paper in 
the Proceedings of the Cambridge Philosophical Society, Theorie generate de 
noyaux reproduisants—Premiere partie (vol. 39 (1944)) which was written in 
1942-1943. In the introduction to this paper we outlined the plan of papers 
which were to follow. In the meantime, however, the general theory has been 
developed in many directions, and our original plans have had to be changed. 

Due to wartime conditions we were not able, at the time of writing the 
first paper, to take into account all the earlier investigations which, although 
sometimes of quite a different character, were, nevertheless, related to our 
subject. 

Our investigation is concerned with kernels of a special type which have 
been used under different names and in different ways in many domains of 
mathematical research. We shall therefore begin our present paper with a 
short historical introduction in which we shall attempt to indicate the dif- 
ferent manners in which these kernels have been used by various investi- 
gators, and to clarify the terminology. We shall also discuss the more im- 
portant trends of the application of these kernels without attempting, how- 
ever, a complete bibliography of the subject matter. 

In Part I, we shall discuss briefly the essential notions and results of our 
previous paper and give a further development of the theory in an abstract 
form. In Part II, we shall illustrate the results obtained in the first part by a 
series of examples which will give new developments of already known ap- 
plications of the theory, as well as some new applications. 
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HISTORICAL INTRODUCTION 

Examples of kernels of the type in which we are interested have been 
known for a long time, since all the Green's functions of self-adjoint ordinary 
differential equations (as also some Green's functions—the bounded ones— 
of partial differential equations) belong to this type. But the characteristic 
properties of these kernels as we now understand them have only been 
stressed and applied since the beginning of the century. 

There have been and continue to be two trends in the consideration ot 
these kernels. To explain them we should mention that such a kernel K(x, y) 
may be characterized as a function of two points, by a property discovered 
by J Mercer [l](2) in 1909. To the kernel K there corresponds a well deter- 
mined class F of functions /(*), in respect to which K possesses the "repro- 
ducing» property (E. H. Moore [2]). On the other hand, to a class of func- 
tions F, there may correspond a kernel K with "reproducing" property (N. 

Aronszajn [4]). ' . 
Those following the first trend consider a given kernel K and study it in 

itself, or eventually apply it in various domains (as integral equations, theory 
of groups, general metric geometry, and so on). The class F corresponding to 
K may be used as a tool of research, but is introduced a posteriori (as in the 
work of E. H. Moore [2], and more recently of A. Weil [l], I. Gelfand and 
D Raikoff [1], and R. Godement [l, 2]). In the second trend, one is inter- 
ested primarily in a class of functions F, and the corresponding kernel K is 
used essentially as a tool in the study of the functions of this class. One of 
the basic problems in this kind of investigation is the explicit construction and 
computation of the kernel for a given class F. 

(2) Numbers in brackets refer to the bibliography at the end of the paper. 
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The first of these trends originated in the theory of integral equations as 
developed by Hubert. The kernels considered then were continuous kernels 
of positive definite integral operators. This theory was developed by J. Mercer 
[l, 2] under the name of "positive definite kernels" and on occasion has been 
used by many others interested in integral equations, especially during the 
second decade of this century. Mercer discovered the property 

n 

(1) 52 K(yit yi)l-iZj =i 0, ji any points, £,■ any complex numbers^), 

characterizing his kernels, among all the continuous kernels of integral equa- 
tions. To this same trend belong the investigations of E. H. Moore [l, 2] 
who, during the second and third decades of the century, introduced these 
kernels in the general analysis under the name of "positive hermitian mat- 
rices" with a view to applications in a kind of generalization of integral 
equations. Moore considered kernels K(x, y) defined on an abstract set E and 
characterized by the property (.1). He discovered the theorem now serving as 
one of the links between the two trends, proving that to each positive 
hermitian matrix there corresponds a class of functions forming what we now 
call a Hilbert space with a scalar product (/, g) and in which the kernel has 
the reproducing property. 

(2) f(y) = (/(*), K(x, ,)). 

Also to the same trend (though seemingly without any connection to 
previous investigations) belongs the notion introduced by S. Bochner [2] 
during the third decade of the century under the name of "positive definite 
functions." Bochner considered continuous functions <j>(x) of real variable x 
such that the kernels K(x, y)=4>(x — y) conformed to condition (1). He 
introduced these functions with a view to application in the theory of Fourier 
transforms. The notion was later generalized by A. Weil [l ] and applied by 
I. Gelfand and D. Raikoff [l], R. Godement [l, 2], and others to the in- 
vestigation of topological groups under the name of positive definite func- 
tions or functions of positive type. These functions were also applied to 
general metric geometry (the Hilbert distances) by I. J. Schoenberg [l, 2], 
J. v. Neumann and I. J. Schoenberg [l], and S. Bochner [3]. 

The second trend was initiated during the first decade of the century in 
the work of S. Zaremba [l, 2] on boundary value problems for harmonic 
and biharmonic functions. Zaremba was the first to introduce, in a particular 
case, the kernel corresponding to a class of functions, and to state its repro- 
ducing property (2). However, he did not develop any general theory, nor 
did he give any particular name to the kernels he introduced. It appears 
that nothing was done in this direction until the third decade when S. Berg- 

(3) Mercer used only real numbers £,• as he considered only real kernels K. 
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man [l] introduced kernels corresponding to classes of harmonic functions 
and analytic functions in one or several variables. He called these "kernel 
functions." They were introduced as kernels of orthogonal systems in these 
classes for an adequate metric. The reproducing property of these kernels 
was noticed by Bergman [l] (also by N. Aronszajn [l]), but it was not 
used as their basic characteristic property as is done at present. 

In the third and fourth decades most of the work was done with kernels 
which we shall call Bergman's kernels, that is, kernels of classes of analytic 
functions/of one or several complex variables, regular in a domain D with the 
quadratic metric 

\  \j\Hr. 
J D 

A quantity of important results were achieved by the use of these kernels 
in the theory of functions of one and several complex variables (Bergman 
[4, 6, 7], Bochner [l]), in conformal mapping of simply- and multiply-con- 
nected domains (Bergman [ll, 12], Zarankiewicz [l] and others), in pseudo- 
conformal mappings (Bergman [4, 5, 8, 9], Welke [l], Aronszajn [l], and 
others), in the study of invariant Riemannian metrics (Bergman [ll, 14], 
Fuchs [1,2]), and in other subjects. 

The original idea of Zaremba to apply the kernels to the solution of 
boundary value problems was represented in these two decades by only a few 
papers of Bergman [1,2,3, 10]. Only since the last war has this idea been put 
into the foreground by a series of papers by Bergman [13], and Bergman and 
Schiffer [l, 2, 3]. In these investigations, the kernel was proved to be a 
powerful tool for solving boundary value problems of partial differential equa- 
tions of elliptic type. By the use of variational methods going back to Hada- 
mard, relations were established between the kernels corresponding to classes 
of solutions of different equations and for different domains (Bergman and 
Schiffer [1,3]). For a partial differential equation, the kernel of the class of 
solutions in a domain was proved to be the difference of the corresponding 
Neumann's and Green's functions (Bergman and Schiffer [l, 3]) (in the 
special case of the biharmonic equation a relation of this kind was already 
noticed by Zaremba). Parallel to this revival of the application of kernels 
to partial differential equations there is developing a study of the relationship 
between these kernels and Bergman's kernels of analytic functions (Bergman 
[12], M. Schiffer [l, 2]). Also the application of kernels to conformal mapping 
of multiply-connected domains has made great progress as all the important 
mapping functions were proved to be simply expressible by the Bergman's 
kernel (Bergman [ll, 12], P. Garabedian and M. Schiffer [l], Garabedian 
[1], and Z. Nehari [l, 2]). Quite recently, the connection was found be- 
tween the Bergman's kernel and the kernel introduced by G. Szegö  (P. 
Garabedian [l]). 

In 1943, the author ([4] also [6]) developed the general theory of repro- 
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during kernels which contains, as particular cases, the Bergman kernel- 
functions. This theory gives a general basis for the study of each particular 
case and allows great simplification of many of the proofs involved. In this 
theory a central role is played by the reproducing property of the kernel in 
respect to the class to which it belongs. The kernel is defined by this property. 
The simple fact was stressed that a reproducing kernel always possesses prop- 
erty (1) characteristic of positive hermitian matrices (in the sense of E. H. 
Moore). This forms the second link between the two trends in the kernel 
theory (the theorem of E. H. Moore forming the first link was mentioned 
above). 

The mathematicians working in the two trends seem not to have noticed 
the essential connections between the general notions they were using. At 
present the two concepts of the kernel, as a positive hermitian matrix and as a 
reproducing kernel, are known to be equivalent and methods elaborated in 
the investigations belonging to one trend prove to be of importance in the 
other. 

We should like to elaborate here briefly on the matter of the terminology 
which has been used by various investigators. As we have seen above, dif- 
ferent names have been given to the kernels in which we are interested. When 
the kernels were used in themselves, without special or previous consideration 
of the class to which they belonged, they were called "positive definite 
kernels," "positive hermitian matrices," "positive definite functions," or 
"functions of positive type." In cases where they were considered as de- 
termined, and in connection with a class of functions, they were called 
"kernel functions" or "reproducing kernels." It is not our intention to settle 
here the question of terminology. Our purpose is rather to state our choice 
and to give our reasons for it together with a comparison of the terminology 
we have chosen with that used by other authors. 

It would seem advisable to keep two names for our kernels, the function 
of each name being to indicate immediately in what context the kernel under 
consideration is to be taken. Thus, when we consider the kernel in itself we 
shall call it (after E. H. Moore) a positive matrix^), in abbreviation, p. matrix, 
or p. m. When we wish to indicate the kernel corresponding to a class of func- 
tions we shall call it the reproducing kernel of the class, in abbreviation, r. 
kernel or r.k. 

As compared to other terminology, we believe that the name "positive 
definite function" or perhaps better "function of positive type" will probably 
continue to be used in the particular case when the kernel is of the form 
ct>(x — y), x, y belonging to an additive group. This term has been used in a 
few instances for some more general kernels, but we believe that it would 
prove to be more convenient if it were restricted to the particular case 

(4) We drop here the adjective "hermitian" since the condition that the quadratic form (1) 
be positive implies the hermitian symmetry of the matrix. 
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mentioned above. 
Although the name of "positive definite kernels" would seem, somehow, 

more adequate than "positive matrices," especially since it was introduced 
first, we have chosen rather the term used by E. H. Moore. This is because 
we wish to reserve the notion of positive definite kernel for more general 
kernels which would include the positive definite matrices as well as some 
other non-bounded kernels (such as the kernels of general positive definite 
integral operators and also the recently introduced pseudo-reproducing 
kernels [Aronszajn 5, 6]). 

On the other hand, when we have in mind the kernel corresponding to a 
given class of functions, the simplest terminology is to call it "the kernel of 
the class" or "the kernel belonging to the class." But when some ambiguity is 
to be feared, or when we wish to stress its characteristic property, we use the 
adjective "reproducing." 

PART I. GENERAL THEORY 

1. Definition of reproducing kernels. Consider a linear class Fof functions 
f(x) defined in a set E. We shall suppose that F is a complex class, that is, 
that it admits of multiplication by complex constants. 

(that is, a real number 

l/ll. Wf+gU\\f\\+U\) 
Suppose further that for fGFis defined a norm \\j 

satisfying: ||/||^0, ||/||=0_ only for /=0, \\cj\\ = \c 
given by a quadratic hermitian form (?(/) 

II/II2 = Ö(/)- 
Here, a functional Q(J) is called quadratic hermitian if for any constants 

£i, £2 and functions /1, fo of F 

e(Si/i + £2/2) = l fx |Wi) + zMih, h) + Si&ecA, h) +1 & I wo- 
Q(Jlt /2) = <2(/2, /1) is the uniquely determined bilinear hermitian form cor- 
responding to the quadratic form Q{f). This bilinear form will be denoted 
by (fi,fi)=Q(fi,fi) and called the scalar product corresponding to the norm 
Jl/ll (or the quadratic metric ||/||2)- We have 

ll/ll2 =(/-/)• 
The class F with the norm, || ||, forms a normed complex vector space. 

If this space is complete it is a Hubert space. 
If F is a class of real-valued functions forming a real vector space (that is, 

admitting of multiplication with only real constants), if the norm, [| ||, in 
Fis given by ||/||2 = (?(/) with an ordinary quadratic form Q (that is, for real 
?x, §2, Qibfi+tä) =&Q(fi)+2te*Q(fi, f*)+&Q(f>), where Q(JU h) is the cor- 
responding bilinear symmetric form), and if F is a complete space, it is a real 
Hubert space. The scalar product is given there by (fi,f2)=Q(fi,fd- 

Every class F of real functions forming a real Hubert space determines a 
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complex Hubert space in the following way: consider all functions fx+ifz 
with/x and/2 in F. They form a complex vector space Fe in which we define 
the norm by ||/i+i/i||2 = |l/i|l2 + ll/*IK F, is a complex Hilbert space. 

The complex Hilbert spaces F determined in this way by real Hilbert 
spaces are characterized by the two properties: 

(1) if/Gft/GP (/is the conjugate complex function of/), 

(2)11/11=/- . „.,, , , 
Let F be a class of functions defined in E, forming a Hilbert space (complex 

or real). The function K(x, y) of x and y in E is called a reproducing kernel {r.k.) 

of F if' 
1. For every y, K(x, y) as function of x belongs to F. 
2. The reproducing property: for every yE.E and everyfGF, 

f(y) = (f(x),K(x,y))x. 

The subscript x by the scalar product indicates that the scalar product 
applies to functions of x. 

If a real class F possesses a r.k. K(x, y) then it is immediately verified that 
the corresponding complex space Fc possesses the same kernel (which is real- 
valued) : 

From now on (unless otherwise stated) we shall consider only complex 
Hilbert spaces. As we have seen there is no essential limitation in this assump- 

tion. 
It will be useful to introduce a distinction between the terms subclass and 

subspace. When Fx and F2 are two classes of functions defined in the same set 
E, Fx is a subclass of F2 if every / of Fx belongs to F2. Fx is a subspace of F2 if 
it is a subclass of F2 and if for every/Gft, ||/||i = 11/11» (II IK and II H2 are 

the norms in Fx and F2 respectively). FxCF2 means that Fx is a subclass of F2. 
2. Resume of basic properties of reproducing kernels. In the following, F 

denotes a class of functions f(x) defined in E, forming a Hilbert space with 
the norm ||/|| and scalar product (/i,/2). K(x, y) will denote the corresponding 
reproducing kernel. 

The detailed proofs of the properties listed below may be found in 
[Aronszajn, 4]. 

(1) If a r.k. K exists it is unique. In fact, if another K'(x, y) existed we 
would have for some y 

0 < \\K(x, y) - K'(x, y)\\> =(K-K',K- K') 

= {K- K', K) - {K - K', K') = 0 

because of the reproducing property of K and K'. 
(2) Existence. For the existence of a r.k. K(x, y) it is necessary and suffi- 

cient that for every y of the set E, f(y) be a continuous functional of / run- 
ning through the Hilbert space F. 

In fact, if K exists, then |/(y)| ^\\f\\(K(x, y), K(x, y))^ = K{y, y)^\\f\\. 
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On the other hand if f(y) is a continuous functional, then by the general 
theory of the Hubert space there exists a function gy(x) belonging to F such 
that/(y) = (J(x), gy(x)), and then if we put K(x, y) = gy{x) it will be a repro- 
ducing kernel. 

(3) K(x, y) is a positive matrix in the sense of E. H. Moore, that is, the 
quadratic form in £1, • • • , £„ 

n 

(1) E K{yu y7)Ui 

is non-negative for all yi, • • • , yn in E. This is clear since expression (1) 
equals || X/i K{x, y;)£;||2, following the reproducing property. In particular it 
follows that 

K(x, x) ^ 0,    K(x, y) = K{y, x),      \K(x, y)\2 ^ K(x, x) K(y, y). 

(4) The theorem in (3) admits a converse due essentially to E. H. Moore: 
to every positive matrix K(x, y) there corresponds one and only one class of func- 
tions with a uniquely determined quadratic form in it, forming a Hubert space 
and admitting K(x, y) as a reproducing kernel. 

This class of functions is generated by all the functions of the form 
^2akK(x, y). The norm of this function is defined by the quadratic form 

II 2Z«4 K(x, 3'j;)||2= ]C X^Cy»! yj)h£}- Functions with this norm do not as 
yet form a complete Hubert space, but it can be easily seen that they may be 
completed by the adjunction of functions to form such a complete Hubert 
space. This follows from the fact that every Cauchy sequence of these func- 
tions (relative to the above norm) will converge at every point x towards a 
limit function whose adjunction to the class will complete the space. 

(5) If the class F possesses a r.k. K(x, y), every sequence of functions {/„} 
which converges strongly to a function/ in the Hubert space F, converges also 
at every point in the ordinary sense, lim fn(x)—f(x), this convergence 
being uniform in every subset of E in which K(x, x) is uniformly bounded. 
This follows from 

I Ay) - My) | = | (f(x) - /„(*), K(x, y)) I ^ ||/ - fn\\ \\K(x, y)\\ 
= 11/ - M\(K(y, y)Y'\ 

If /„ converges weakly to /, we have again fn(y)—>f(y) for every y (since, 
by the definition of the weak convergence, (/„(#), K(x, y))—*{f(x), K(x, y)). 
There is in general no increasing sequence of sets -EiCSC • ■ • —>-E in each 
of which /„ converges uniformly to /. 

If a topology (a notion of limit) is defined in E and if the correspondence 
y*-*K(x, y) transforms £ in a continuous manner into a subset of the space F, 
then the weakly convergent sequence {/„} converges uniformly in every 
compact set EiQE. In fact E\ is transformed into a compact subset of the 
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space F. For every e>0 we can then choose a finite set (yi, • • ■ , yi) C-Ei so 
that for every yE£i there exists at least one yk with \\K(x, y)—K(x, yk)\\ 
^e/4:M, where M = lu.b.n ||/„||. 

Further, if we choose n0 so that for n>n0, |/(y*) — /»(y*) | <e/4, we shall 
obtain for y£Ei. 

I /(y) - /-(y) I = I (/(y) - /(?*)) + (/(?*) --/»(y*)) + (/»(?*) - /»(y)) I 
^ I /(y*) - /.(y») I + I (/(*) - /«(*). £(*. y) - #(*. y*)) I 

^ j + 11/ - /-|| ||*(*, y) - K{x, yk)\\ £j+2M^< e. 

The continuity of the correspondence y*->K(x, y) is equivalent to equi- 
continuity of all functions of F with ||/|| <M for any M>0. This property is 
satisfied by most of the classes with reproducing kernels which are usually 
considered (such as classes of analytic functions, harmonic functions, solu- 
tions of partial differential equations, and so on). 

(6) If the class F with the r.k. K is a subspace of a larger Hubert space £>, 
then the formula 

/(y) = (h,K(x,y))x 

gives the projection / of the element h of § on F. 
In fact h=f+g, where g is orthogonal to the class F. K(x, y) as a function 

of x belongs to F and so we have (h, K(x, y)) = (J+g, K(x, y)) = (/, K(x, y)) 
=/(y) by the reproducing property. 

(7) If F possesses a r.k. K, then the same is true of all closed linear sub- 
spaces of F, because if/(y) is a continuous functional of/running through F, 
it is so much the more so if / runs through a subclass of F. If F' and F" are 
complementary subspaces of F, then their reproducing kernels satisfy the 
equation K'+K"=K. 

(8) If F possesses a r.k. K and if {gn} is an orthonormal system in F, then 
for every sequence {an} of numbers satisfying 

2 I a* |2 <  co, 
l 

we have 

EI«-11 *»(*) I ^ £(*, *)1/2 ( EI«»I2)  • 

In fact, for a fixed y, the Fourier coefficients of K(x, y) for the system {gn} 
are 

(K(x, y),gn{x)) = (gn(x), K(x, y)) = g„(y). 
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Consequently 

£ gn(yy 5S (K(x, y), K(x, y))x = K(y, y). 
l 

Therefore 
cc /    M \l/2  /    =o \l/2 

(°° \ 1/2 

Ei«n|2J       • 

3. Reproducing kernels of finite-dimensional classes. If F is of finite 
dimension n, let Wi(x), • ■ • , wn(x) be w linearly independent functions of F. 
All functions/(x) of F are representable in a unique manner as 

(1) f(x) = XI f*w*(a:), f* complex constants. 
i 

The most general quadratic metric in F will be given by a positive definite 
hermitian form 

n 

(2) 11/112 =  E <*,&£i. 
I,J=I 

The scalar product has the form 

(3) (/, g) = ]£ a.-j-f.^j, wÄere g = X) '?*«'*• 
ill 

It is clear that 

(4) «,-,• = (u>i, Wj). 

Therefore the matrix {a,-,-} is the Gramm's matrix of the system {wk}. 
This matrix always possesses an inverse. Denote by {/3y} the conjugate of 
this inverse matrix. We have then 

(5) E «zÄ-fc = 0 or 1    following as i ^ k or i = k. 
i 

It is immediately verified that the function 

(6) £(*, y) =   £   ßi}Wi(x)wj(y) 
1,3=1 

is the reproducing kernel of the class F with the metric (2). 
The matrix {ßa) is hermitian positive definite. From the preceding de- 

velopments we get, clearly, the following theorem. 
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THEOREM. A function K(x, y) is the reproducing kernel of a finite-dimen- 
sional class of functions if and only if it is of the form (6) with a positive definite 
matrix {ßn} and linearly independent functions wk(x). The corresponding class 
F is then generated by the functions wk{x), the functions fE.F given by (1) and 
the corresponding norm \\f\\ given by (2), where {an} is the inverse matrix of 

TO- 
4. Completion of incomplete Hilbert spaces. In applications, we often 

meet classes of functions forming incomplete Hilbert spaces, that is, linear 
classes, with a scalar product, satisfying all the conditions for a Hilbert space 
with the exception of the completeness. For such classes, two problems present 
themselves. Firstly, the problem of completing the class so as to obtain a 
class of functions forming a complete Hilbert space and secondly, to decide 
(before effecting the completion of the class) if the complete class will possess 
a reproducing kernel. 

A few remarks should be added here about the problem of the completion 
of a class of functions forming an incomplete Hilbert space. Consider such a 
class F. It is well known that to this class we can adjoin ideal elements which 
will be considered as the limits of Cauchy sequences in F, when such a limit 
is not available in F, and in such a way we obtain an abstract Hilbert space 
containing the class F as a dense subset. This space, however, will not form 
a class of functions. In quite an arbitrary way we could realize the ideal ele- 
ments to be adjoined to F as functions so as to obtain a complete space formed 
by a linear class of functions, but, in general, this arbitrary manner of comple- 
tion will destroy all the continuity properties between the values of the func- 
tions and the convergence in the space. 

In this paper when we speak about the functional completion of an in- 
complete class of functions F, we mean a completion by adjunction of func- 
tions such that the value of a function / of the completed class at a given 
point y depends continuously on / (as belonging to the Hilbert space) (5). From 
the existence theorem of reproducing kernels we deduce the fact that a com- 
pleted class has a reproducing kernel. In this way the problem of functional 
completion and of the existence of a reproducing kernel in the complete class 
is merged into one problem. We shall prove here the following theorem: 

THEOREM. Consider a class of functions F forming an incomplete Hilbert 
space. In order that there exist a functional completion of the class it is necessary 
and sufficient that 1° for every fixed yGE the linear functional f(y) defined in F 
be bounded; 2° for a Cauchy sequence {fm} CF, the condition fm(y)-^0 for every 
y implies \\fm\\—*0. If the functional completion is possible, it is unique. 

Proof. That the first condition is necessary is immediately seen from the 

(6) A more general functional completion was introduced in connection with the theory of 
pseudo-reproducing kernels (N. Aronszajn [S]). 
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existence theorem of reproducing kernels, since the complete class would 
necessarily have such a kernel. The necessity of the second condition follows 
from the fact that a Cauchy sequence in F is strongly convergent in the 
complete space to a function /, and the function / is the limit of fm at every 
point y of E. Consequently, /= 0 and the norms of fm have to converge to the 
norm of / which is equal to zero. To prove the sufficiency we proceed as fol- 
lows: consider any Cauchy sequence {fn}(ZF. For every fixed y denote by 
My the bound of the functional f(y) so that 

(i) f(y)\£Mv\\fl 
Consequently, 

\U(y)-fn(y)\ SMv\\fm-fn\\. 

It follows that {fn(y)} is a Cauchy sequence of complex numbers, that is, 
it converges to a number which we shall denote by/(y). In this way the 
Cauchy sequence {/„} defines a function / to which it is convergent at every 
point of E. 

Consider the class of all the functions /, limits of Cauchy sequences 
{/«} C.F. It is immediately seen that it is a linear class of functions, and that 
it contains the class F (since the Cauchy sequence {/„} with /„ =/£ F is 
obviously convergent to/). Consider, then, in the so-defined class F, the norm 

(2)   • 11/111 = hm [I/.II 

for any Cauchy sequence {/„} C F converging to / at every point y. This 
norm does not depend on the choice of the Cauchy sequence: in fact, if 
another sequence, {/rc' } converges to / at every point y, then /„' —/„ will be a 
Cauchy sequence converging to zero, and by the second condition the norms 
||/n -/n|| converge to zero. 

Consequently, 

| lim \\f'n\\ — lim ||/„|| | = lim | ||/^|| — ||/„[| | g lim \\f'n — fn\\ = 0. 

Oh the other hand, it is readily seen that ||/||? is a quadratic positive 
form in the class F; it is obviously 0 for /=0, and it is positive for/p^O be- 
cause of (1). This norm defines a scalar product in F satisfying all the re- 
quired properties. It remains to be shown that F is complete and contains F 
as a dense subspace. 

The second assertion is immediately proved because FC.F. For elements 
of F, the norms || ||, || ||i coincide,and every function /£ Fis, bydefinition, 
the limit of a Cauchy sequence {/„} C.F everywhere in E. It follows that/ is a 
strong limit of/„ in F since by (2) 

lim ||/ - /„Hi = lim   lim \\fm - /„|| = 0. 
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To prove the first assertion, that is, the completeness of F, we shall con- 
sider any Cauchy sequence {fn}CF. Since F is dense in F, we can find a 
Cauchy sequence {/„' } C^such that 

lim \\fn — /„||i = 0. 

The Cauchy sequence {/„' } converges to a function f£.F. This con- 
vergence is meant at first as ordinary convergence everywhere in E, but the 
argument used above shows that the /„' also converge strongly to / in the 
space F. It follows immediately that/,, converges strongly to/. The unique- 
ness of the complete class is seen from the fact that in the completed class a 
function/ must necessarily be a strong limit of a Cauchy sequence {/„} QF. 
Since a reproducing kernel must exist for the completed class, this implies 
that / is a limit everywhere of the Cauchy sequence {/„} which means that 
it belongs to the above class F. As the norm of/ has to be the limit of ||/n|| 
it necessarily coincides with ||/||i. It is also clear that every function/ of F 
must belong to the completed class. In summing up the above arguments we 
see that any functional completion of F must coincide with F and have the 
same norm and scalar product as F. 

It should be stressed that the second condition cannot be excluded from 
our theorem. We shall demonstrate this by the following example: 

Consider the unit circle \z\ <1. Take there an infinite sequence of points 
\zn] such that 

E(i-I*»l)< *• 

We shall denote by E the set of all points z„, and in E we shall consider 
the class Foi all polynomials in z. It is obvious that the values of a polynomial 
cannot vanish everywhere in the set E if the polynomial is not identically 
zero. Consequently the values of a polynomial on the set E determine com- 
pletely the polynomial. We define the norm for a function/ of the class F by 
the formula 

J J \i 
p(z) \2dxdy, z = x + iy, 

where £ denotes the polynomial whose values on the set E are given by the 
function /. We see that F satisfies all requirements for a Hubert space with 
the exception of completeness. The first condition of our theorem is satisfied 
but the second is not. To prove the last assertion we take the Blaschke 
function (j>(z) corresponding to [zn]. This function has the following prop- 
erties 

4>(zn) = 0, n = 1, 2, 3, • • •', 

| <Kz) I < 1 for | 2 | < 1. 
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The function <j>{z) is a strong limit of polynomials pk(z) in the sense 

Km   I  I        | 0(z) - pk(z) \2dxdy = 0. 
J  J \z\<\ 

Consequently the sequence {pk} is a Cauchy sequence in our class F and 
the polynomials pk(z) converge at each point zn to 0(z„) =0, in spite of the 
fact that the norms \\ph\\ converge to ||0|| >0. 

This example also shows us the significance of condition 2°. We can 
say that if condition 2° is not satisfied it means that the incomplete class is 
defined in too small a set. If we added a sequence of points {zre' } of the unit 
circle with a limit point inside the circle to the set E of our example, then the 
class of polynomials, considered on this enlarged set E\ with the same norm 
as above, would satisfy condition 2°. There are infinitely many ways of en- 
larging the set E where an incomplete class F is defined so as to insure the 
fulfillment of condition 2°. 

In the general case we can always proceed as follows. We can consider 
the abstract completion of the class F by adjunction of ideal elements. This 
completion leads to an abstract Hubert space £. To every element of § there 
corresponds a well determined function f(x) defined on the set (the limit of 
Cauchy sequences in .F converging to this element). But to different elements 
of § there may correspond the same function/. The correspondence is linear 
and the functional/(y) are continuous in the whole §. To every point yGE 
there corresponds an element hy£& such that f(y) = (/, hv), where/ is any 
element of § corresponding to the function/(x). As there are elements of § 
different from the zero element and which correspond to the function 
identically zero on E, it is clear that the set of elements hv is not complete in 
the space §. (This is characteristic of the fact that condition 2° is not 
satisfied.) To the set of elements hv we can then add an additional set of ele- 
ments so as to obtain a complete set in §. This additional set will be denoted 
by E'. We can then extend the functions of our class F in the set E+E' by 
defining, for any element &££', f(h) = (f, h). This class of functions, so ex- 
tended in E+E', will then satisfy the second condition. 

We shall complete this section by the following remark: It often hap- 
pens that for the incomplete class F a kernel K(x, y) is known such that for 
every y, K(x, y) as function of x belongs to F (or, even more generally, be- 
longs to a Hubert space containing F as a subspace), this kernel having the 
reproducing property 

f(y) = (/(*), K(x, y)) for every fEF- 

It is immediately seen that the first condition of our theorem follows from 
this reproducing property so that it suffices to verify the second condition in 
order to be able to apply our theorem. 

5. The restriction of a reproducing kernel. Consider a linear class F of 



1950] THEORY OF REPRODUCING KERNELS 351 

functions defined in the set E, forming a Hubert space and possessing a r.k. 
K{x, y). K is a positive matrix. If we restrict the points x, y to a subset 
EiC-E, K will still be a positive matrix. This means that K will correspond 
to a class Fx of functions defined in Ex with an adequate norm || l^. We shall 
now determine this class Fi and the corresponding norm. 

THEOREM. If K is the reproducing kernel of the class F of functions defined 
in the set E with the norm || ||, then K restricted to a subset EiCE is the re- 
producing kernel of the class Fi of all restrictions of functions of F to the subset 
Ei. For any such restriction, fiE.Fi, the norm ||/i||i is the minimum of ||/|| for all 
/£ F whose restriction to Ex is fi. 

Proof. Consider the closed linear subspace F0CF formed by all functions 
which vanish at every point of EL Take then the complementary subspace 
F' = FOF0. Both ^o and F' are closed linear subspaces of F and possess 
reproducing kernels K0 and K' such that 

(1) K = Ko + K'. 

Since K0(x, y), for every fixed y, belongs to F0, it is vanishing for xEEx. 
Consequently, 

(2) K(x, y) = K'(x, y), for x E £i. 

Consider now the class Fi of all restrictions of F to the set Ex. If two 
functions/ and g from F have the same restriction/i in Euf—g vanishes on 
Ei and so belongs to F0. Conversely, if the difference belongs to F0, f and g 
have the same restriction/i in £x. It is then clear that all the functions /£ F 
which have the same restriction /i in E have a common projection // on F' 
and that the restriction of f{ in Ei is equal also to/i. It is also clear that among 
all these functions,/,// is the one which has the smallest norm. Consequently 
by the definition of the theorem, we can write 

(3) \\hh = ll/III. 
The correspondence between fiEFx and // EF' obviously establishes a 

one-to-one isometric correspondence between the space Fx with the norm 
[|    ||i and the space F' with the norm ||    ||. 

In order to prove that for the class Fx with the norm 11 ||i the reproducing 
kernel is given by K restricted to Eu we take any function /i E -Fi and con- 
sider the corresponding function f{ EF'. Then, for yEEh fi(y)=fi{y) 
= (f{(x),K'(x,y)). 

Since K'(x, y), for every y belongs to F', we may now write fi{y) 
= {fi\{x), K'(x, y)) = (fi(x), Ki(x, y))i, where Ki(x, y) is the restriction of 
K'(x, y) (considered as function of x) to the set Ei. 

By hermitian symmetry we obtain from (2) 
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K(x, y) = K'(x, y), for every y £ Ex. 

This shows that the restriction Kx{x, y) of K'(x, y) coincides with the re- 
striction of K to the set E\, which completes our proof. 

The norm [| ||i is especially simple when the subclass F0CF is reduced to 
the zero function. In this case F' = F, each function /i £ Fx is a restriction of 
one and only one function /Ei7 (since every function of F vanishing in £1 
vanishes identically everywhere in E), and therefore ||/i||i = ||/|[ for the func- 
tion / having the restriction fx. 

6. Sum of reproducing kernels. Let Kx{x, y) and K2{x, y) be reproducing 
kernels corresponding to the classes Fi and F2 of functions defined in the 
same set E with the norms || \\i and || |[2 respectively. Ki and K2 are posi- 
tive matrices, and obviously K = Ki+K2 is also a positive matrix. 

We shall now find the class F and the norm |j || corresponding to K. 
Consider the Hubert space £> formed by all couples {/i, f2} with fiE.Fi. 
The metric in this space will be given by the equation 

\\{furi\\* = Ml + \\M\l 
Consider the class F0 of functions / belonging at the same time to Fx and 

Fi (Fo may be reduced to the zero function). Denote by §0 the set of all 
couples {/, —/} iorfZEFo. It is clear that £>0 is a linear subspace of §. It is 
a closed subspace. In fact if {/„, -/„}-»{/',/"} then/» converges strongly to 
/' in Fi, and —/„ converges strongly to f" in F2. Consequently,/« converges 
in the ordinary sense to/' and —/„ to/", which means that/"= —/' and/' 
and/" belong to F0. §o being a closed linear subspace of § we can consider 
the complementary subspace £>' so that § = §0©§'- To every element of §: 
{/',/"} there corresponds the function f(x) =/'(x)+/"(x). This is obviously 
a linear correspondence transforming the space ^> into a linear class of func- 
tions F. The elements of £> which are transformed by this correspondence 
into the zero function are clearly the elements of §o- Consequently, this 
correspondence transforms §' in a one-to-one way into F. The inverse cor- 
respondence transforms every function fGF into an element \g'(f), g"{f)\ 
of §'. We define the metric in F by the equation 

\\f\\2 -\\{g'(f),s'V)}\\2 ==h'(f)t + h'V)\\l 
Our assertion will be that to the class F with the above-defined norm there 

corresponds the reproducing kernel K = Ki+K2. To prove this assertion we 
remark: 

(1) K(x, y) as a function of x, for y fixed, belongs to F. Namely, it cor- 
responds to the element {Ki(x, y), K2(x, y)} £§. 

(2) Denote for fixed y, K'{x, y) = g'(K(x, y)) and K"(x, y) = g"(K(x, y)). 
For a function f<EF, we write/' = g'(/),/" = g"(/). Consequently,/^) =/'(y) 
+/"(y), K'(x, y)+K"(x, y)=K{x, y)=K1(x, y)+K2(x, y), and thus K"(x, y) 
-K2(x, y) = - [K'(x, y) -K^x, y)], so that the element {.Ki(x, y) -K'{x, y), 
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Kiix, y)-K"(x, y)}G&o- Hence 

f(y) = f{y) +f"(y) = (/'(*), K,{x, y))1 + (/"(*), K2(x, y))2 

= ({/',/"}. {*'(*. :v).#"(*,:y)}) 

+ ({/',/"}, {£i(*, y) - K'(x, y), K,(x, y) - K"(x, y)}). 

The last scalar product equals zero since the element {/', /"} £§' and the 
element {Ki(x, y)—K'(x, y), K2{x, y)—K"(x, y)}G&o- The first scalar 
product in the last member is, by our definition, equal to (/(x), K(x, y)) 
which proves the reproducing property of the kernel K(x, y). 

We can characterize the class F as the class of all functions f(x) =fi(x) 
+/2(x) with fiG.Fi- In order to define the corresponding norm without 
passage through the auxiliary space, we consider for every fGF all possible 
decompositions/=/i+/2 with/, £ .FV For each such decomposition we con- 
sider the sum ||/i||i + ||/2||l. ||/|| will then be defined by 

IMl'-nünfllrf + rt 
for all the decompositions of /. To prove the equivalence of this definition 
and the previous one we have only to remember that f{x) corresponds to the 
element {fi, fz] £§ and also that/ corresponds to {g'(f), s"(f)} G$?', that 
is,/=/i+/2 = £'(/)+g"(/)- Consequently, 

/2-g"(/)= - [/i-g'Cf)] 

so that {fi-g'(f),fi-g"U)} £§o and 

IIAII! + ||/S||I = ||{/i,/s}ir = II Urn s"(/)}||2 + II ifi - &'{f),h - s"U)\\\\ 
and this expression will obviously get the minimal value if and only if 
fi — g'(f)> h~g"(f) and its value is then given by 

II {«m fu))\\\ 
which by our previous definition is ||/||2. 

Summing up, we may write the following theorem: 

THEOREM. If Ki(x, y) is the reproducing kernel of the class Fi with the norm 
|| || i, then K(x, y)=Ki(x, y) +K2(x, y) is the reproducing kernel of the class F 
of all functions f=fi+f2 withfiG.Fi, and with the norm defined by 

ll/ll2 = min [ll/Jl! + ||/2||
2

2], 

the minimum taken for all the decompositions /=/i+/2 with /,£.F.-(6). 

It is easy to see how this theorem can be extended to the case where 

(6) This theorem was found by R. Godement [l ] in the case of a positive definite function 
in a group. 
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K(x, y) = YA=I 
Ki(x> y)- A particularly simple case presents itself when the 

classes Fx and F2 have no function besides zero in common. The norm in F 
is then given simply by ||/||2 = ||/i||i + ||/2|]2- 

In this case (and only in this case) Fi and F2 are complementary closed 

subspaces of F. 
If we denote by F the class of all conjugate functions of functions of a 

class F, then the kernel of F is clearly Kx(x, y) =K(x, y)=&(y, *) (K is the 
kernel of F and in F the scalar product (/, g)i is given by (g, /), the norm 
ll/llx by 11/11). Consequently Re K(x, y) = 2-1(K(x, y)+K(y, *)) is the repro- 
ducing kernel of the class F0 of all sums/+g, for/ and g in F with the norm 
given by 

a) y;-2mmfli/ir + yf], 
the minimum taken for all decompositions 4>=f+g, / and g in F.    ^ _ 

If i? is a complex space corresponding to a real space, that is, if F= F 
and 11/) | = | l/l | (see § 1), it is clear that F0 = F and 11/| 10 = 11/| |. Consequently the 
kernel K = Re K is real and this property characterizes the kernal K cor- 
responding to a real space. 

7. Difference of reproducing kernels. For two positive matrices, Kx{x, y) 
and K(x, y), we shall write 

1) £i« K 

if K(x, y)-Ki(x, y) is also a p. matrix. 
From Ki«:Kz«K3, it follows clearly that KX«.KZ. On the other hand, if 

KX«X2 and K2<&KX, it follows that KX = K2. In fact, we then have K2(x, x) 
-Kx(x, x) ^0 and also Kx(x, x)-K2(x, x) ^0, which means K2(x, x)-Kx{x, x) 
= 0. Further, by the property of positive matrices, 

\K2{x, y) - Kx(x, y)Y^ [K2(x, x) - Kx(x, x)][K2(y, y) - Kx(y, y)] = 0, 

so that K2(x, y) = Kx(x, y) for every x, y in E. Thus we see that the symbol « 
establishes a partial ordering in the class of all positive matrices. 

THEOREM I. If K and Kx are the r.k.'s of the classes F and Fx with the 
norms \\    ||, ||    ||i, and if KX«K, then FXCF, and \\fi\\i^\\fi\\ for every fxGFx. 

Proof. KX«K means that K2(x, y)=K(x, y) -Kx(x, y) is a positive matrix. 
Consider the class of functions F2 and the norm || ||2 corresponding to K2. 
As K = KX+K2 we know by the theorem of §6 that F is the class of all func- 
tions of the form /i(«)+/»(*) with fx<EFx and f2<EF2. In particular, when 
/2 = 0, the class F contains all functions fxGFx so that FXQF. On the other 
hand, in F we have, by the same theorem, 

H/jr-minlll/xllJ + rt] 
for all decompositions/1=//-+/2, with// GK and// EF2. In particular, for 
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the decomposition/i=/i+0, we obtain 

ll/JI' ^ ll/ili: 
which achieves the proof. 

THEOREM II. If K is the r.k. of the class F with the norm || ||, and if the 
linear class FiQF forms a Hubert space with the norm || ||i, such that |[/i[|i 
= ||/i|| for every fiGFi, then the class Fx possesses a reproducing kernel K\ 
satisfying K\<£K. 

Proof. The existence of the kernel for F involves the existence of constants 
My such that \f(y)\ gMv\\f\\ for allfGF. In particular, for fGF^F, we get 

|/i(y)| £MM gM,||/i||i 

which proves the existence of the kernel K% of Fx. 
Let us now introduce an operator L in the space F, transforming the 

space F into the space Fx and satisfying the equation 

(/i,/) = (/i.i/)i. for every AGFL 

The existence and unicity of Lf is proved in the following way: (f, /), 
for fixed/, is a linear continuous functional of/i in the space F. A fortiori, it 
is a similar functional in the space Fx. As such, it is representable as a scalar 
product in Fi of/i with a uniquely determined element Lf of Fi. 

The operator L is everywhere defined in F, linear, symmetric, positive, 
and bounded with a bound not greater than 1. It is clear that L is everywhere 
defined and linear. It is symmetric because for any two functions/,/' of F, 
(Lf, /') = (£/, Lf')i=(Lf, Lf)1=(Lf, /) = (/, Lf). It is positive because 
(Lf,f) = (Lf, L/)i^0. It is bounded with a bound not greater than 1 because 
(Lf,f) = (Lf, Lf)^\\Lf\\\^\\Lf\\\ Consequently, \\Lf\\^(Lf, f)S\\Lf\\-\\f\\, 
and thus ||L/||^ 11/11. 

Consider now the operator I—L (I being the identical operator). This 
operator clearly possesses the same properties as those enumerated above for 
L. Therefore there exists a symmetric, bounded square root V of this 
operator. (In general there will be infinitely many L' available and we choose 
any one of them.) Hence 

i'2 = 7 - L. 

We define F2 as the class of all functions f=L'f for fEF. Denote by 
Fo the closed linear subspace of F transformed by L' into 0, and by F' the 
complementary space FOF0. The functions of F0 are also characterized by 
the fact thatZ'2/ = 0 (from L'2/=0 it follows that (L'2f,f) = (L'f, L'f) =||L'/||2 

= 0) which is equivalent to f = Lf. 
Now denote by P' the projection on F'. Every two functions f,goiF 

transformed by V into the same function/2 of F2 differ by a function belong- 
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ing to F0. Consequently, they have the same projection on F'. It is also clear 
that the class F' is transformed by V on F2 in a one-to-one way. We remark 
further that 

FtCF' 

since for foGF0, (/„, L'f) = (L'f,, f) = (0, /) =0. In the class F2 we introduce 
the norm ||    ||2 by the equation 

H/2II2 = \\P'f\\, for any/with/2 = L'f. 

With this metric the class F2 is isometric to the subspace F'QF (the 
isometry being given by the transformation L'). It follows that F2 is a com- 
plete Hilbert space and we shall show that the class F2 with the norm || |(2 
admits as reproducing kernel the difference K(x, y)—Ki(x, y). To this effect 
we remark firstly that the operator L is given by the formula 

My) =Lf= (/, Ktix, y)). 

In fact, since LfGFi, /iW=(/iW, K^x, y))i=(f(x), K^x, y)). Conse- 
quently for any fixed z, the operator L applied to K(x, z) gives the function 
LK(x, z) =Ki(y, z). If follows that the operator I—L=Ln transforms K(x, z) 
into L'2K(x, z) =K(y, z)—Ki(y, z). This formula proves, firstly, that K{x, z) 
— Ki(x, z) as a function of x belongs to F2, since it is the transform of 
L'K{x, z) by L'. Secondly, we prove the reproducing property for any 
/2GF2: 

My) = (M*), K{x, y)) = (L'f, K(x, y)) = (/, L'K(x, y)) 

= (P'f, P'L'K(x, y)) = (L'f, L'L'K(x, y))2 

= (Mx), K(x, y) - Ki(x, y))t. 

In these transformations we took /as any function of .Fsuch that/2 = -L'/ 
and we used the property L'K(x, y)€zF?.(ZF'. This finishes the proof of our 
theorem. 

The proof of Theorem II has established even more than the theorem an- 
nounced: namely, it gives us the construction of the class ^2 and the metric 
|| ||2 for which the difference K — Ki is the reproducing kernel. Let us sum- 
marize this in a separate theorem. 

THEOREM III. Under the hypotheses of Theorem II, the class F2 and the 
norm || ||2 corresponding to the kernel K2 = K — Ki are defined as follows: the 
equation My) =Lf= (f(x), K\(x, y))x defines in F a positive operator with bound 
not greater than 1, transforming F into F\ C F. We take any symmetric square 
root L'=(I—L)112. F2 is the class of all transforms L'f for f^F. Let F0 be the 
closed linear subspace of all functions fGF with f=Lf and let F' be F-Q-F0. L' 
establishes a one-to-one correspondence between F' and Fi. The norm ||/2||2/w 
fi = L'f, f'(E.F', is then given by 
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ll/*ll« = 11/11- 
The construction of the class F2 is somehow complicated because we need 

the square root L' of the operator I-L. However, there exists a much easier 
way of constructing an everywhere dense linear subclass of F2 and the norm 
|| ||2 in this subclass. Namely, we can consider the class F{ of all trans- 
forms (I-L)f=f-Lf=L'2f, oifGF, by the operator I-L. 

This clearly is a linear subclass of F2. The norm || ||2 in F{ can be de- 
fined as follows: 

||/;||22 = ||z'/||2 = (L'f, L'f) = (/, L"f) = (/,/- Lf) = (/, /) - (/, Lf) 

= (/, /) - (Lf, Lfh. 

In these transformations we considered f{ =f—Lf=L'f. 
F2 is everywhere dense in F2 (in respect to the norm || ||2), otherwise we 

would have a function /, = I'/V0 with (L'f, L'2g)2 = 0 for all gGF. We can 
suppose here f'GF' so that 0 = (£'/', L'2g)2=(f, L'g) = (L'f, g) whence 
i'/' = 0,/'G^o, which is impossible. 

The simplest case is the one where Fi = F2. By using the spectral decom- 
position, we can easily show that this case presents itself if, and only if, the 
zero is not a limit point of the spectrum of L', which is the equivalent of 
saying that 1 is not a limit point of the spectrum of L. In this case F2=F'. 
If L has a bound <1, the spectrum does not contain 1 and the subspace F' 
coincides with the whole space F so that F2 = F. 

When L is completely continuous, the only limit point of the spectrum of 
L is zero, so that 1 is certainly not a limit point, and F{ = F2 = F'. 

We shall add still another theorem which results immediately from 
Theorem III. 

THEOREM IV. Let K be the r.k. of class F. To every decomposition K = Ki 
+K2 in two p. matrices Ki and K2, there corresponds a decomposition of the 
identity operator I in Fin two positive operators L\ and L2, I = Li+L2, given by 

Lif(y) = (/(*), K,(x, y)),       L2f(y) = (/(*), K2(x, y)), 

such that if L{/2 and Ll/2 denote any symmetric square roots of Li and L2, the 
classes Fx and F2 of all transforms L\/2fand LlJ2f respectively, fGF, correspond to 
the kernels Kx and K2. If Fi0, i-=l,2,isthe class of all fGF with L;/=0, and if 
F[i =pQ.p.0! then L\12 establishes a one-to-one correspondence between Fi' and 
Fi and the norm \\    ||,- in F( is given by ||i*1/2/ll»- = 11/11 for every fEF{'. 

Conversely, to each decomposition I = Li+L2 in two positive operators there 
correspond classes F{ with norms || ||,■ defined as above. The corresponding r.k.'s 
Ki are defined by K{(x, y)=L{K(x, y) and satisfy the equation K = Ki+K2. 

8. Product of reproducing kernels. Consider two positive matrices  Ki 
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and Ki denned in a set E. Using a classical result of I. Schur concerning finite 
matrices, it is easy to prove that their product Ki-Kt is also a positive 
matrix. We shall prove this theorem, constructing at the same time the class 
Fand the norm [| || corresponding to the matrix K = KVK2{

1). To this effect, 
we consider the class Ft and the norm || ||,- corresponding to Ki and form the 
direct product F' of the Hubert spaces Fx and F2, F'= Fx® Fz{8). We con- 
struct this direct product in the following manner: We form the product set 
E' = EXE of all couples of points {xh x2}, XiGE. In the set E' consider the 
class of all functions/'(xi, xt) representable in the form: 

(1) /'Oi, *a) = Z /i   (*i)/a   («2), 
k=l 

with/^Gi7! and/2(i)E^2. As scalar product of two such functions we define: 

(2) (/', g'Y =LL(/i ,gi )i(h . #2 )2, 

where m is the number of terms in the representation of g'. The same func- 
tion/' may admit of many different representations of type (1). The scalar 
product, (/', g')', is independent of the particular representation chosen for 
/' and g'. In fact, we see immediately from (2) that 

(3) (/', gj = £, {{fix,, X2), A*o)i, A*))* 
1=1 

which proves that (/', g') is independent of the particular representation of/'. 
In a similar way we prove that it is independent of the particular representa- 
tion of g'. We still have to prove that (/', g')' satisfies all the requirements 
for the scalar product. It is clearly seen that it is a bilinear hermitian form in 
/', g' and it remains to be proved that (/', /')'^0 and is equal to zero only 
when /' = 0. In order to prove this, we take any representation of /' of 
type (1) and orthonormalize the sequences {fik)} and {/2

(i;)} in the spaces 
Fx and Ft respectively. Denote by {/i(i,1)} and {$,i>} the orthonormalized 
sequences, where Ä = l, 2, • • • , ni, 1 = 1, 2, • • • , «2- 

Every function ff® is then a linear combination of the orthonormal func- 
tions //i;''1) so that we obtain a representation for /' as a double series 

(4) f'{xi, «2) = I E ak,ifi     /2 '   . 
fe-i 1=1 

We then obtain for (/',/')' the following expression 

(7) The idea of the proof was arrived at independently by R. Godement and the author. 
Godement applied it only to positive definite functions. 

(8) For the notion of direct product of abstract Hubert spaces see J. v. Neumann and F. 
J. Murray [l]. 
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4=1 1=1   *'=1    l'=l 

(5) v     ' 711        ?12 

-EDI «».i I1- 
4=1 !=.l 

It is clear from this representation that (/', /') ^0 and equals zero only 
when all the aM = 0, that is, when/' = 0. The class of all functions/' of type 
(1) does not yet form in general a Hubert space because it may not be 
complete. To complete this class with respect to the norm || \\', we con- 
sider a complete orthonormal sequence {gf} in the space Ft, i=l, 2. It is 
obvious that the double sequence {g?) (*<) • gf (x2)} is composed of functions 
of type (1) and is orthonormal in respect to the norm || ||'. Consider then, 
all the functions g' of the form 

(6) g'Oi, xt) = E D «Mgi (*i)«2 (^ 
fc=l 1=1 

with 

(7) (g',g')' = DDI^I2< °°. 
fc=i i=i 

It is clear that any finite sum of type (6) is also of type (1) and that the 
norm || ||' for such finite sums coincides with the norm introduced in (7). 
We prove firstly that every sum of type (6) is absolutely convergent for 
every xu x2. In fact, as the class F: possesses the reproducing kernel Ku in 
view of (7) we have 

DI «*.i 11 A*i) I ^ [*i(*i. *i)llflr DI «*,« l2l 
*=i L t-i J 

Then, 

(ft),     -  I I     (!) 
| «ft,! | I i 

&=1 i=l 

E^-> I II     (&)/     -s I 1     O/     \ I 
2j «*■! I I Si    (Xl) I I &    Wl 

&=1 i=l 

(8) s D|«i%)I [^i(*i. ^)]1/2[Dl«',!I2] 
p    oo      co -11/2 

=g [K1(x1,x1)]^[Ki(xi,x2)\^-\  DDI«M|
S 

L ft=l !=1 -I 

since the space F2 possesses the reproducing kernel K2. 
The class of functions g' of the form (6) clearly forms a complete Hubert 

space, isomorphic with the space of double sequences {ah,i\ satisfying (7). 
The inequality (8) gives us further, for a function g' of type (6), 
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I g'iju 72) I < £i(yi, yiY'^iy,, y^igf, 

which means that the space of functions of type (6) possesses a reproducing 
kernel. 

It remains to be proved that this space is the completion of the class of all 
functions/' of type (1) with the norm || ||'. As already the finite sums of 
type (6) are everywhere dense in the space of all functions of type (6) it is 
sufficient to prove that every function of type (1) is of type (6). For this, it 
is enough to prove that every function of type (1) may be approximated as 
closely as we wish (in respect to the norm || |J') by finite sums of type (6). 
Let us consider a representation (1) of the function/'. We can approximate 
every ff1 by a finite linear combination hf of functions gf so that U^Hi 
= \\fi■ II»'' ||/i ^ ||» = e- Before we proceed further, we shall prove for 
every function/' and any of its representations (1) the inequality 

„(»On      II „(*) t^zii/nirii/ni, 
In fact, 

U/t2 = (/',/')' = zz(/r,/r))1(/r
,,/!',)! 

A=l  1=1 

^ ti: ii/niiii/",iii-ii/ni.n/.,,ii. 
k=l  1=1 

- "vikwll ll/wll T - 2-, H/1    |[l||/2    ||2      . 
_ fc=l J 

Continuing with the proof of the approximation we consider the functions 

h'(xu x2) = 2D hi   Oi)/2   O2), 
1=1 

g'(xi, Xi) = X) hi   Oi)A2   (x2). 

It is clear that h' is of type (1) and that g' is at the same time of type (1) and 
(6), which can be seen by developing the functions hf* as linear combinations 
of gf. Denoting by M the maximum of all ||/iW||;, we obtain 

||/'-g'INII/'-Ät + ||Ä'- „1 u 

11/'- *? = x;ll(/l%) - A*i))/2
(%)ll' 

k=l 

^ ±\\/ik) - Oli-llA !5  ±Me = nMe, 
k=l 
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l|A'-«T = 

^   V*  II , W||       II  A"> 7 '■"■Mi       ^-    V*   ir u 
^z2\\h \\i-\\h   ~ h2 \U = l^Mi = nMe- 

t h?\xiM?\xt) - hf (*,)) 

(*)ll    II ,(*)       ,(*)ll 
I 2   = 

*=1 

Finally, we obtain 

|/' - g'||' ^ 2MM6, 

which proves our assertion. 
The class of all functions of type (6) with the norm given by (7) forms 

the direct product F' = ft® ft. As it is obtained by functional completion of 
the class of functions of type (1), this class being independent of the choice of 
orthogonal systems {g?} and {g™}, the class F' is also independent of the 
choice of these systems (see the uniqueness of functional completion in §4). 

We shall now prove the following theorem: 

THEOREM I. The direct product F' = ft® ft possesses the reproducing kernel 
K'(xu x2, yi, y2)=K1(x1, yi)Ki{xi, y2). 

The proof is immediate. Firstly, as a function of xh x2, K' is of the form 
(1) and so belongs to F'. Secondly, for any function g' of the form (6) we have 

g'iyu yi) = Z) X «*.«(gi (*0. #i(*i> yi))i(g* O). K2(x2, y2))2 

= {g'{xlt x2), K'(xi, x2, yi, y2))' 

which completes the proof. 
From Theorem I we see immediately that the kernel K(x, y) 

= Ki(x, y)K2{x, y) is a p. matrix as the restriction of the kernel K'(xu x2, ylt y2) 
to the subset ExQE' consisting of the "diagonal" elements {x, x) of E'. 
Further, from the theorem of §5 we obtain the class of functions and the 
norm corresponding to the kernel K. Thus we have the following theorem. 

THEOREM II. The kernel K(x, y) = Ki(x, y)K2{x, y) is the reproducing kernel 
of the class F of the restrictions of all functions of the direct product F' = ft® ft 
to the diagonal set ft formed by all the elements {x, x} G-E'- For any such re- 
striction f, 11/11 =min llg'H'/'W all g'Gft, the restriction of which to the diagonal 
set Ei is f. 

REMARK. Let {g?5} be a complete orthonormal system in ft. Then every 
function /G-F is representable as a series 

/(*) = Hh   (x)Si   (*)./»    GP2,   Lll/s   II» < °°- 
1 1 

Among all such representations of f(x) there exists one (and only one) 
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which gives its minimum to the sum Sll/^lll- This minimum|s equal to ||/||2. 
We can apply Theorem II to a class F and its conjugate F. The product 

of the corresponding kernels is \K(x, y)\2 = K(x, y)K(y, x) and the cor- 
responding class may be obtained from the remark above. 

9. Limits of reproducing kernels. We shall consider two cases: (A) essen- 
tially, the case of a decreasing sequence of classes F{Z)F{2> • • • with a de- 
creasing sequence of kernels K£2>K£2>K£2> ■ ■ • ; (B) essentially, the case of 
an increasing sequence of classes and kernels. 

A. The case of a decreasing sequence. Let {En} be an increasing sequence 
of sets, E their sum 

(1) E = Ex + E2 + ■ ■ ■ , Ei C E2 C • • • • 

Let Fn, n = 1, 2, • • • , be a class of functions defined in En. For a function 
ftiGFn we shall denote by/Mm, m^n, the restriction of /„ to the set EmCEn 

(/„„=/„). We shall suppose then that the classes Fn form a decreasing sequence 
in the sense 

(2) for every fn £ Fn and every m Ss n,       fnm £ Fm. 

Suppose further that the norms [| ||„ defined in Fn form an increasing 
sequence in the sense 

(3) for every fn £ Fn and every m ^ n,        ||/nm||»» ^ ||/n||». 

Finally, we suppose that every Fn possesses a reproducing kernel Kn{x, y). 
The case of all sets E„ equal, Ei = £2= • • • -E, is not excluded. Clearly, 

in this case fnm=fn, FnCFm, and, following Theorem II of §7, it is enough to 
suppose the existence of Ki(x, y) in order to deduce the existence of all Kn 

and to obtain the property Kn<^Km for m<n. 
In the general case we have to introduce the restrictions Knm of Kn to 

the set Em (mfZn). By the theorem of §5, Knm is the r.k. of the class Fnm of all 
restrictions fnm for/K£En. The norm in Fnm is given by 

||/nm||nm = Hlin \\f'n\\n for till f'n  WÜk f'nm  = fnm. 

From (3) we get 

llf   II      > \\f   II 

and consequently, by Theorem II of §7, 

(4) Knm«Km,       m < 11. 

We shall now prove the following theorem. 

THEOREM I. Under the above assumptions on the classes Fn, the kernels 
Kn converge to a kernel K0(x, y) defined for all x, y in E. KQ is the r.k. of the 
class F0 of all functions fa defined in E such that 1° their restrictions f0n in En 
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belong to Fn, n = l, 2, ■ ■ ■ , 2° limB=M ||/on||»<°°. The norm of f0EF0 is given 
by ||/o||o=:limn==0 ||/o„||». 

REMARK. Condition 1° implies, following (3), that limn=oo||/0»||„ exists, but 
it may be infinite. 

Proof. The convergence of Kn to K is to be understood in this way: any 
two points x, y in E belong to all En starting from some £„0 on. Consequently 
Kn(x, y) are defined for n>n0 and we have to prove lim„=M Kn(x, y)=K(x, y). 

For fixed yEEk and k^m^n we have, following our assumptions, 

\\Kmh{x, y) - Knk(x, y)\\k ^ \\Km(x, y) - Knm(x, y)\\m 

= Km(y, y) - Knm(y, y) - Knm(y, y) + \\Knm(x, y)\\m 

(5) =S Km(y, y) - 2Kn{y, y) + \\Kn(x, y)\\l 

= Km(y, y) - Kn(y, y). 

From (4) it follows that Km-Knm is a p.d. matrix. Therefore Km(y, y) 
-Knm(y, y)=Km(y, y)-Kn(y, y)^0, and the sequence {Km(y,y)}m>k is a 
decreasing sequence of non-negative numbers. Consequently it is a con- 
vergent sequence. (5) shows then that the functions Km!i(x, y)EFk, for fixed 
k and m—»°°, converge strongly in Fk to some function (j>k(x)EFk. This in- 
volves limm=M Kmk(x, y) = limm=00 Km(x, y) =fa(x) for every x£Ek. 

Since for every x, y in E we can choose a k so that x and y belong to Eh, it 
is clear that Km(x, y) converge and that the limit K0(x, y) does not depend 
upon the choice of k. The function 4>k(x) is clearly the restriction Kok(x, y) of 
K0 to Ek. Consequently Kmk(x, y), for fixed y, converges strongly in Fk to 
K0k(x, y) which belongs to Fk. We then obtain from (5), by taking «-»», 

(6) \\Kmk(x, y) - Kok(x, y)\\l g K^y, y) - KQ(y, y)\ 

\\Kük(x, y)\\k g \\Kok(x, y) - Kmk(x, y)\\k + \\Kmk(x, y)\\k 

^ (Km(y, y) - Ko(y, y)Yn + \\Km(x, y)\\m 

^ (Km(y, y) - Ko(y, y))1'2 + (Km(y, y))1'2 

and for m->=o, \\Kok(x, y)\\l^K0(y, y). 
Therefore for each yE.E, K0(x, y), as function of x, belongs to the class F0 

of our theorem. 
Let us now prove that the class F0 is a Hubert space. 
Fa is linear, since ||a/o„+i3gon||nSs \a\ ||/on||n+|ß| ||gon||n- 
||/o||o is a quadratic form, since 

||«/o + i3go||o = lim 11«/on + ßgtm\\n 

=   Hm   [aa||/on||» + a|8(/0n, gOn)n + äß(gOn, /on)n + 0#||gOn||n]. 
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Since the quadratic form in square brackets converges for all values of 
the complex variables a, ß, it converges to a form of the same kind. This 
proves that ||/o||o is a quadratic form and also that 

(7) (/o,  go)o   =   Hm  (fon,  gOn)n- 

It remains to be proved that F0 is complete. 
Take a Cauchy sequence {f^}CF0. The inequality H/Sf-ZSlU 

=S||/S°-Ä for l>k, gives, when *->«, \\f^-f£\\k^\\f^-f^%. Hence, 
{fok}m=i,2,.-- is a Cauchy sequence in Fk, limm=00 fw=4/kE.Fk- It is clear 
that ipk is the restriction to Eh of a function xpo defined in E. We have 

l!i-(m) /    II i-      \\Am)        /n)\\      ^-i-      II /m)        An)\\ ||/oft   - ^o*||* = hm ||/oft   — /OJ, II» s lim ||/0    —/o   jJo- 
B=0O 71=00 

This allows us to prove that ^oGft, since it gives a bound for ||^o*|| * inde- 
pendent of k, namely 

IM» =§ 11/w'lU + Hm ||/om) - fl% S \\/o% + lim U/S"0 - rf°||,. 

On the other hand, it shows that 

ii /m)     t ii      i-   u Am)     i ii  -- v   ii /m;    y ||/o     — ^o||o =.hm ||/ofc   — ^o*||* ^ hm ||/0     — /( 

and consequently lim™»«, |[/om)— ^o||o = 0.  This achieves the proof of com- 
pleteness. 

We have still to prove the reproducing property of K0. To this effect 
take any/oE^o, y£.E. For sufficiently large n we have 

My) = fon(y) = (/<)»(*), #„(», y))„ = (/<>»(», Kon(x, y))n 

+ (fon(x), Kn(x, y) — K0n(x, y))n. 

For w—> oo, the first scalar product in the last member converges, by 
formula (7), to (/0, K0(x, y))0. The second scalar product converges to 0; in 
fact, by formula (6) (with k = m = n), it is in absolute value smaller than 

\\fon\\nKn(x, y) - K0n(x, y)\\n :g \\fa\\0(Kn(y, y) - K0(y, y))1'2. 

This achieves the proof of our theorem. 
B. The case of an increasing sequence. Let {En} be a decreasing se- 

quence of sets, E their intersection 

(8) £= EVE2 ,£0£2D ••• . 

Let Fn be a class of functions defined in En. As before, we define the re- 
striction fnm, for fnGF„, but now m has to be greater than n. We suppose 
then that Fn form an increasing sequence 
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(9) for every fn £ Fn and every m ^ n,       fnm £ Fm. 

We suppose further that the norms ||    [|„ form a decreasing sequence 

(10) for every /„ £ Fn and every m ^ n,        \\fnm\\m S= ||/n||». 

Finally, we suppose that every Fn possesses a r.k. Kn(x, y). 
Now, even for all En equal, we cannot deduce the existence of all kernels 

Kn from the existence of one of them. 
As in the case A, we get for the restrictions Knm of Kn the formula 

(11) Knm « Km, for m > n. 

For y£-E, [Km(y, y)} is an increasing sequence of positive numbers. Its 
limit may be infinite. We define, consequently, 

(12) E0 = set of y £ E, such that Ko(y, y) = lim Km(y, y) < ». 
m= » 

For an illustration of this point consider Bergman's kernels Kn for a 
decreasing sequence of domains En. If the intersection E of the domains En 

is composed of a closed circle with an exterior segment attached to it, the set 
E0 will be composed of all interior points of the circle. 

We suppose that E0 is not empty and define the limit-class of the classes 
Fn in the following way: let F0 be the class of all restrictions fno of functions 
fnEiFn (n = I, 2, •■■) to the set E0. From (10), we know that the sequence 
ll|/n*|l*} k=n,n+i, • • • is decreasing and we can define 

(13) ||/no||o = Hm ||/„*||*. 

As in case A we prove that ||/no||o is a positive quadratic form. This form 
is positive definite since from ||/«o||o = 0 it follows that for any y££o, |/no(y)| 
= \U(y)\ = | (U(x), Kh(x, y))*| ^\\U\\k(Kk(y, y))1/HI/no||o(^o(3', y))1/2 = 0, 
that is, /„o = 0. Consequently ||     ||0 is a norm in F0. 

In general F0 will not be complete. In order that ^o admit of a functional 
completion with a reproducing kernel, there are two conditions to be fulfilled 
which are given in the theorem of §4. The first one is that for every y there 
exists a constant My so that 

(14) | U(y) | S My\\fn0\\0 for aUfna £ F0. 

Let us remark that the functions /„o may be considered as defined in 
the whole set E (taking the restriction of /„ to E). Then, for every y££, the 
condition (14) is equivalent to K0(y, y) =lim Kn(y, y) < oo. In fact, from the 
latter condition it follows in the same manner as above that \fno(y) | 
^\\fno\\0(Ko(y, y)yi\ that is, (14) with Mv=(K0(y, y))U*. From (14), by tak- 
ing fn(x)=Kn(x, y) we get Kn(y, y)^My\\Kn0(x, y)\\0£My\\Kn(x, y)\\„ 
= My(Kn (y, y))U*t that is, Kn(y, y)^M2

v. 
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Consequently, condition (14), that is, condition 1° of §4, is assured by our 
restriction to the set E0. But the condition 2° of §4 is in general not assured. 

We may illustrate this by the counter-example of §4. Take all the En 

equal to the set E of this counter-example. As class Fn we take the «-dimen- 
sional subspace of the class F introduced there, consisting of all polynomials 
of degree ^«. Each Fn is a complete space and its r.k. Kn converges to the 
Bergman kernel of the circle, restricted to E. Consequently E0 = E, F0 = F 
and ||    ||o is clearly the norm introduced there. 

To overcome this difficulty we can proceed as indicatedjn §4. We com- 
plete F0 by ideal elements; in the completed Hilbert space FQ we choose an 
additional set E' of ideal elements such that the functions of F0, extended to 
E0+E', with the same norm as in F0, form a space admitting a functional 
completion leading to a class P0 with a reproducing kernel K0. 

Following the theorem of §5, we can return now to our set E0 by restrict- 
ing the functions of F0 to E0. If we take in the restricted class the norm de- 
fined in the theorem of §5, we shall get as r.k. the restriction of K0 to E0. 
The restricted class F0* and its norm || ||* can then be described, in terms of 
the space F0 and its norm |]    ||0, in the following way. 

fSEFo* if there is a Cauchy sequence {jf} CF0 such that 

(15) /*(*) = lim fon\x) for every x G E0, 

(16) ||/*(*)||*=min lim ||/o' C1o, 

the minimum being taken for all Cauchy sequences {fkn)} CF0 satisfying 
(15). There exists at least one Cauchy sequence for which the minimum is 
attained. Such sequences will be called determining /o*. 

The scalar product corresponding to ||    ||* is defined by 

(17). (Jo, So)o = bm (/o   , go  )o 

for any two Cauchy sequences {/f} and {g^} determining/0* and go*. 
It is important to note that formula (17) is still valid when only one of 

the sequences {/0
B)}, {^B)} is determining, the other satisfying only (15). 

All these facts about the space ^0* and its norm and_ scalar product are 
easily obtained when we form, as in §5, the subspace PlCF0 of all /oG-Fo 
vanishing in E0. The complementary subspace Pi = F^Q-Pl is then in an 
isomorphic correspondence with F0*, /0'-*/o*, where /„* is the restriction of 
/o to Et,. Further, 

I* = ||/o||oi (Jo, go)o = (jo, Io)o, 
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where ||    ||0 and ( , )0 are the norm and scalar product in P0. 
A Cauchy sequence {/£} CF0 converges in P0 to a function f0. In the set 

E0 it converges everywhere to a function /o*G-?o* which is the restriction of 
/o to EQ. /O* is also the restriction of /0' = projection of f0 on Pj. Since Ja—Jo 
EF°0, we get 

j-^ll2 II 7 ll~2 Il7'll~2    ,     117 7'll~2 ^   ||  ,*||*2 

=    L/0    0    • lim||/o1io = ||/o!|r=||/;||r+||/o-/o| 

The equality here is attained if {ffi} converges in Pa to/0'. Such a Cauchy 
sequence we have called as determining /0*. If now two Cauchy sequences 
{/o0} and {gon>} converge everywhere in Eo to/0* and g0*, they converge in 
^o to vectors J0 and |0 whose restrictions to E0 are /0* and g0*. If Jo and |0' 
are projections of/o and |0 on Pi, then (/0*, g0*)o* = (Jö, go )o , but lim ($K), g$B))0 

= (/o, fo)o • If one of the sequences, say {/o"'}, determines its limit in E0, 
then/o=/o', and (/„*, g0*)o*=(fr, fo')o~ = (fo . So)o =üm(fS*. «bW)o. 

The space F0* being completely defined we prove the following theorem. 

THEOREM II. The restrictions Kno(x, y) for every fixed y^E0form a Cauchy 
sequence in F0. They converge to a function K0*(x, y) G-Fo* which is the reproduc- 
ing kernel of F0*. 

Proof. By an argument similar to the one used in (5) we obtain for 

(18) \\Kmh(x, y) - Knk(x, y)\\k g Km(y, y) - Kn(y, y). 

'Taking k—» =o , we have 
|2 

(19) \\Km0(x, y) - Kn0(x, y)\\o g Km(y, y) - Kn(y, y). 

This proves, together with (12), that {Kn0(x, y)} is a Cauchy sequence in 
F0. By property (14) this sequence converges for every x£E) to a function 
K*(x, y) which, by definition (15), belongs to F*. 

It remains to prove the reproducing property of ÜC*. To this effect take 
any/oG-F* and a Cauchy sequence {fon)}CF0 determining/*. Each f^m is a 
restriction of some fknEFkn, f0

n)=fk„o- By (13) there exists an increasing se- 
quence nii<ni2< ■ • ■ such that 

2 1 
(20) mn  >   K ||/*„mJ|mB  ~   ||/i„o||o   ^ 

fl- 

it is clear that {Kmno(x, y)} is also a Cauchy sequence converging to 
K%(x, y). Consequently, from (17) it follows that 

(21) (fo(x), KQ(x, y))0 = lim (fk„o(x), Kmn0(x, y))0. 

We may now write 
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(/M(a;), Kmn0(x, y))„ = (/*.»„(*), £»»(*. y))mn 

(22) - [(/W*), £»»(*. y))-h. - (/*.<>(*). ^»,o(*, y))o]. 

The square bracket is of the form [(g, h)mn-(ga, Ao)o] for g, h of Pm„ (go, Ao 
are restrictions of g, A to £0). This is a bilinear form in g, A and the cor- 
responding quadratic form (g, g)m„-(go, go)o = ||g||L„-||go||o is positive (fol- 
lowing (10) and (13)). Consequently the Cauchy-Schwarz inequality is valid 
for this form and in the case of the square bracket of (22) it gives in connec- 

tion with (20) 

I [ • ■ • ] I ^ fll/*,»Jf«. - II/MIIO]
1
" Öl W*. y)tn - ll*».o(*, y)||o]1/2 

^ — \\Kmn(x, y)|k = —Kmn(y, y)1/2- 
n n 

For w-^oo this converges to 0, since Km„(y, y)/Ka(y, y) < °°. Therefore, 
(21) and (22) yield 

(fo(x), K*(x, y)fo = lim C/W*)> #m„(x, y))». = lim/t.».(y) 

= lim/M(y) = lim/o" (y) = fo(y), 

which is the reproducing property of K0. 
REMARK. A particularly simple case is the one where the class F0 with 

the norm || || 0 happens to be a subspace of a class F possessing a reproducing 
kernel. Then, condition 2° of §4 is clearly satisfied; P0* is the functional 
completion of F0, the norm |[ ||* is an extension of the norm || ||0, and F$ 
is simply the closure in F of F0. 

A trivial case of this kind is one where the Fn form an increasing se- 
quence of subspaces of a class F with a r.k. Hence Ei = £2= • • • =E = E0 

and F* is the closure of the sum ^ Fn. 
10. Construction of a r.k. by resolution of identity. Let us give a brief 

resume of the essential properties of resolutions of identity in a Hubert space 
§ (for a complete study of resolutions of identity, especially in connection 
with the theory of operators, see M. H. Stone [l]). For simplicity's sake we 
shall suppose here that the space £> is separable. 

We call a resolution of identity a class {Px} of projections in §, depending 
on a real parameter X, - oo <X< + °=, and having the following properties: 

1. Px is a projection on a closed subspace §xC§, increasing with 
X: £x<C£xforX'<X. 

2. Px^O for X-*- oo ; Px-»i" (identity operator) for X-»+ °°. 
For any open interval A: X'<X<X", we define 

(1) A£ = £x- O $x',       AP = Px» - Py. 
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AP is the projection on A§. 
For any decomposition of the real axis into intervals Ak=(kk, Xt+i), 

— oo*— • • • <A_2<X-i<Ao<Ai<A2< • • ■ —»+oo, we have, obviously, 

(2) I = £ A,P, 
;. 

the series converging in the sense of strong limit for operators. 
A real number A0 belongs to the spectrum of {P\} if AP^O for every 

interval A containing A0. The numbers belonging to the spectrum form a 
closed set. 

For any real 6 and any decreasing sequence of intervals An containing 0 
and converging to 8 there exist the limits 

(3) 8eP = lim AnP,        5<$ = lim AB£, 

the second limit being the intersection of the decreasing sequence of sub- 
spaces Ajp. These limits do not depend on the choice of A„ and 8gP is the 
projection on 5e§. Only for an enumerable set of 6, say {(?&}, is SeP^O. 

If we have 8enP = I, which means Se^ + de^-jr •••=§, we say that the 
spectrum of {Px} is discrete. 

If, for all 6, 8$P = 0, we say that the spectrum of {P} is continuous (often 
called purely continuous). 

In our applications we shall meet, essentially, only discrete spectra or 
continuous spectra. 

It has been proved (theorem of Hellinger-Hahn) that for any spectrum 
there exist finite or infinite systems {/„(A)} of elements /n(A) £§, depending 
on A, such that if we denote by Afn the difference/„(A") — /^(X')» we have 

(a) for m^n, (Aifm, A2/n) =0 for any intervals Ai, A2. 
(b) (Ai/„, Aifn) — 0 for any non-overlapping intervals Ai, A2. 
(c) For every interval A, the elements Ai/„, n = 1, 2, • • • for all AiCA, belong 

to the subspace A§ and form a complete system in A§. 
The minimal number of elements in such a system {/n(A)} is called the 

multiplicity of the spectrum. The spectrum is called simple if the multiplicity 
= 1, that is, if there exists such a system with only one element/i(A). 

In the case of a discrete spectrum the multiplicity is the maximal dimen- 
sion of the subspaces 8g&. 

If a system of elements {/„(A)} satisfies (a) and (b) and instead of (c) 
satisfies the weaker condition 

(c') The elements A/„ for n = 1,2, • • ■ and for all intervals A form a complete 
system in §, 
then the system {/n(A)} determines a corresponding resolution of identity 
\P\} (for which it satisfies (c)) in the following manner: 

§x is the subspace generated by all the A/n, « = 1, 2, • ■ • , A = (A',A") with 
X"<A. 
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This resolution of identity is continuous to the left, that is, §x = lim £>x- 
for XVX. This condition (or the right side continuity) is usually acceptedjor 
reasons of convenience, as an additional condition on resolutions of identity. 

For any system {/„(X)} satisfying (a), (b), and (c), it is seen that ||/n(X)||2 

is a non-decreasing function /i„(X), AM„ = M»(X")-^(X') = ||A/n||2. We con- 
sider the measure ju„, introduced on the real axis by ju„(X), which leads to the 
Lebesgue-Stieltjes integral ß(X)dnn(\). It has been proved that for every 
wE§ there exists the limit 

(u, A/„)       d{u, /„(X)) 

for all X with exception of a set of ^„-measure 0. 
We have further 

(5) 

(6) 

Nl2 = E f"|*»(x)|s<w 
n   " —oo 

^ r-         , N      d(»,/.(X)) 
(«, ») = Z) I    0»(X)\A»(X)^Mn,   where   ^n(X) = 

n   «^ —oo dßn(X) 

Let us now apply the above considerations to the construction of a r.k. 
We suppose that our Hubert space § is a class of functions defined in E with 
a r.k. K(x, y). 

For a given resolution of identity {P\} every subspace A& will have a r.k. 
which we shall denote by AK(x, y). The kernel AK determines the projection 
AP by the equation 

(7) AP/ = fi(y) = (/(*), AK(x, y)), for any/G§. 

The kernel K corresponds to the identity / and following (2) we have 

(8) K(x, y) = J^AkK(x,y), 
k 

for any decomposition {Ak} of the real axis. The series in (8) converges 
absolutely. In fact, following (2), the series K(y, z)=IK(y, z) = ^AkPK(y, z) 
= £(■£(*. z)> A*£(*, y))»= I>*£(y. z) as unction of y is strongly con- 
vergent. It converges then in the ordinary sense for every y, in particular 
for y = z. Thus, K(z, z) = 2>^(2> z) < °° > AkK(z, z) ^0. Consequently 

D | A*iT(*, y) | g Z (A*X(*. ^^(A^Cy, y))1'2 

If the resolution of identity {Px} has a discrete spectrum {0*} and if the 
r.k. of 8t,k& is denoted by 8BkK, then we have again an absolutely convergent 
representation 
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(9) K{x, y) = £ &,tK(x, y). 
k 

An especially important case which is most often applied is one where 
the spectrum is simple. Then the subspaces Sek$> are one-dimensional and 
each is generated by a function gk(x) which we can suppose normalized, 
]|g4|| = l. The functions gk(x) form a complete orthonormal system in §. 
The kernels 8ehK(x, y) are given by gk(x)gk(y), and (9) takes the form of the 
well known development of the kernel in an orthonormal complete system 

(10) K(x, y) = £ gk{x)JJS), 
k 

which for a long time was taken as a basis of the definition of a r.k. 
Suppose now that the resolution of identity {P\} is given by a system of 

functions/n(X) =/„(», X) satisfying (a), (b),and (c')- Following (4) we define 
for u = K(x, y) (considered as function of x), the functions 

,,.      _    ^      ..      (K(x,y),Afn)            fn(y, X") - fn(y, X')       dfn(y,\) 
(11)     $n{y, X) = hm ■ ■ = lim = —:  • 

A~X A/in Mn(X")   —  Mn(X') dfln(\) 

From (6) and (5) we then obtain 

-00 

(13) K(y, y) = £ f" | *B(y, X) |*J/*„. 

The series and the integrals in (12) are absolutely convergent because of 
(13). 

The function $n(y, X) is in general defined for each y only almost every- 
where in X in the sense of the measure ßn. Nevertheless, in most applications 
it turns out to be a continuous function of X. In spite of this, $n{y, Xo), as func- 
tion of y for a fixed X0, will not in general belong to §. 

11. Operators in spaces with reproducing kernels(9). In a class F forming 
a Hubert space with a r.k. K, the bounded operators admit of an interesting 
representation. 

The notation LxK(x, y) indicates that the operator is applied to K(x, y) as 
function of x and that the resulting function is considered as function of x 
(but it will depend also on y which will act in the transformation as a param- 
eter). It is then clear what is meant by LzK(x, z), LxLlK{x, z), and so on. The 
notation Lf(x) is clear and we may also write Lf(x0) if x0 is a particular value 
of x. Consider the adjoint operator L* (that is, the operator for which (Lf, g) 
= (/, L*g)). Take the transform 

(9) The developments of this section are closely related with the work and ideas of E. 
H. Moore. 
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(1) A(x, y) = LxK(x, y). 

A is a function of the two points x, y. As function of x it belongs to F. 
Take then for any/GF the scalar product (/(x), A(x, y))x=(f(x), L*K(x, y))x 

= (Lf(x),K(x,y))x = Lf(y), 

(2) Lf(y) = (/(*), A(x, y)). 

In this way, to each bounded operator there corresponds a kernel A(x, y) 
which for every y, as function of x, belongs to i7. The operator is represented 
in terms of the kernel by formula (2). 

Let us now find the kernel A*(x, y) corresponding to the adjoint operator 
L*. We have (L*)* = L and thus 

(LxK(x, z), K(x, y)) = (K(x, z), L*xK(x, y)), 

(A*(x, 2), K(x, y)) = (A(x, y), K(x, z)), 

(3) A*(y, z) = A(z, y). 

It is clear that to Z1+Z2 or aL correspond A1+A2 and sA respectively. 
We shall now find the kernel A corresponding to the composition L = LiL2. 
Since (ii L°)* = L2*L?, we have 

A(y, z) = (LiL2fvK(y, z) = LtvL*lvK(y, z) 

= LfyAiiy, z) = (Ai(*. z), At(*. y)) = (Ai(x, z), A2(y, *)) 

(4)        A(y, z) = (Ai(*. z), T^~xj) f°r L = L^- 

Let us note the following properties resulting immediately from (l)-(4): 

((/(*), A(x, y))x, g{y))y = (/(*), (g(y), A(x, y))v)x 

= (f(x),\A(x, y), g{y))y)x. 

(6) 77ze symmetry of L is equivalent to the hermitian symmetry of A: 

A(x, y) = A(y, x). 

We prove now the following property: 

(7) The operator L is positive if and only if A is a p. matrix. 

In   fact,   L   positive   means   that   for   every f£F,   (Lf,  /)^0.   For 
/= T^hK{x, yk) we then get 

EX)*■<?/(£»*(*, yO.*(*.y»)) 

= SS Mi(A*(x, yd, K(x, yd) = EE A*(y,-, y<)tei 

= EE A(y» yi)tfi > 0. 
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This proves that A and thus A is also a p. matrix. It also proves the well 
known fact that a positive operator is always symmetric. 

If now A is a p. matrix, we see that (Lf, f) ^0 will be satisfied for all / 
of the form Yli^K(x, yk). As these functions form a dense set in F, every 
function fGF may be approximated by them and we get (Lf, /)^0 by a 
passage to the limit. 

In generalizing the notation of §7 we shall write Ai«A2 or A2«Ai for any 
two kernels if A2—Ai is a p. matrix. 

THEOREM I. For an arbitrary kernel A(x, y), hermitian symmetric (that is, 
A(x, y) = A(y, x)), the necessary and sufficient condition that it correspond to a 
bounded symmetric operator with lower bound 2: m > — <» and upper bound 
^M< + *> is that rai£«A«Af.K. 

Proof. Necessity. If L is the corresponding symmetric operator with 
bounds not less than m and not greater than M, we have 

m(f, /) g (Lf, f) ^ M(f, f) for every f£F. 

It follows that ((L-mI)f, /) ^0 and ((MI-L)f, /) ^0, that is, the oper- 
ators L — ml and MI — L are positive. Therefore, from (7) we obtain that 
K — mK and MK — A are p. matrices. 

Sufficiency. The condition of the theorem is clearly equivalent to 

1 
0 « (A - mK) « K. 

M — m 

This means that the kernel K1=(\/(M—m)(k — mK) is a p. matrix and is 
«X. Therefore it is a reproducing kernel of a class Fi with the norm || ||j 
and following Theorem I, §7, FiC^ and ||/i||i ^||/i|| for/iG-Fi. Then, as in 
Theorem III, §7, the operator 

Lif(y) = (/(*), 2Ti(*. y)) 

is a positive operator in F with a bound not greater than 1, that is, 

0£(L1f,f)£ (/,/). 

This operator corresponds to Ki(x, y) by its definition. Consequently, to 
A=(ikT — m)Ki+mK there corresponds the operator L = (M— m)Li+mI and 
the last inequalities give 

m(f, f) g (mlf, f) + ((M - m)Lj, f) g M(f, f), 

m(f,f)^(Lf,f)^M(J,f). 

An arbitrary kernel A is representable in a unique way in the form 

(8) A = Ai + ^A2,   Ai and A2 hermitian symmetric. 

Namely, we have 
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Ai(*, y) = — (A(x, y) + A(y, x)), 

(9) 

A2(x, y) = — .(A(a;, y) - A(y, a)). 

The necessary and sufficient condition in order that A correspond to a 
bounded operator is, clearly, that Ai and A2 correspond to such operators. To 
the last kernels we can apply Theorem I. 

We now consider convergence of operators. The three simplest notions of 
limit for bounded operators are the following: the weak limit, w. limn=M Ln = L, 
if Lnu converges weakly to Lu for every u£.F; the strong limit, str. lim Ln = L, 
if L„u converges strongly to Lu; the uniform limit, un. lim Ln = L, if \\Ln — L\\ 
—>0, where ||    || for operators denotes their bound. 

It is clear that weak convergence follows from strong convergence and 
that strong convergence follows from the uniform one. 

It is known that w. lim Ln = L involves the boundedness of all ||Z„|| and 
the inequality ||i|| ^lim inf. ||Zr„||. 

THEOREM II. If L = w. lim Ln, then for the corresponding kernels we have 
A(x, y) =lim An(x, y) for every x, y in E. If L = un. lim Ln, then An converges 
uniformly to A in every set of couples (x, y) for which K(x, x) and K(y, y) are 
uniformly bounded. 

The first part follows immediately, by the definition of weak convergence 
from 

AO, y) = (A(Z, y), K(z, x))z = (L*K{z, y), K(z, x))z 

= (K(z, y), LzK{z, y))z = lim (K(z, y), LnzK(z, x)), = lim An(x, y). 

The second part follows easily from 

| A(x, y) - An(x, y)\ =\ (K(z, y), (L - Ln)zK(z, x)) \ 

^\\K(z,y)\\z\\(L-Ln)zK(z, *)||, 

^ \\K(z, y)\\.\\L-Ln\\\\K(z, x)\\, 

= \\L - Lj\\(K(x, X) K(y, y)y>\ 

Consider now two orthonormal complete systems in F, {g4} and {gB
/; } 

(in particular we may have g'm = gm)- The double systernJ^OOg^y)} is a 
complete orthonormal system in the direct product F®F. 

If A(x, y) belongs to the direct product we know that it is representable 
by an absolutely convergent double series 

(10) A(X, y)   =   X <Xmng'm(x)gn' (X> 
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where the coefficients amn satisfy ]£,»,„ I «"«»I2< °° and are Siven hy 

(11) amn = (g'n'(y), (g»(*), A(*. y)),)» = (gn'(y), igm(y)). 

THEOREM III. For every bounded operator L, the series in (10) with coeffi- 
cients given by (11) is convergent for every x and y in the sense 

(12) A(x,y)=   lim    *£,*£, amng'm(x)g^'(y). 
P,C=co    m=l n=l 

The A(x, y) belonging to the direct product F® F correspond to operators with 
finite norm. 

Let Pp. and Ps". be the projections on the subspaces generated by 
gi, gi, • • • . gp and gi',gi', ■ ■ • , ga". It is clear that str. limp_M PI =1, 
str. lim3=00 Pg', =1. Consequently, for any u, v in F 

(13) Hm   (P'q'v, LP'pu) = (v, Lu). 
P,ff=00 

If we take now v = K(z, y) and u = K(z, x) as functions of z, we get P"v 
= P£K{z, y)= Zkn'(z)gY(y), PJ<u= £?£(*)£(*) and (11) and (13) then 
lead directly to (12). 

The norm of an operator L is given by 9?(L) = ZXill-kg»»!!2 for any 
orthonormal complete system {gn}. It is independent of the choice of this 
system and may be finite or infinite. From (11) it is clear that 

CO 

Lg'm{y)   =   H OLmngn{y) 

by development in the system {g„" }. Consequently, ||ig4(3')||2= Z)"=i |ow|2 

and $ft(L) = ^=i Z)n=i | amn\2 which proves the second part of our theorem. 
12. The reproducing kernel of a sum of two closed subspaces. Let F be a 

class with a r.k. K. We know that the r.k.'s of closed subspaces of F cor- 
respond to the projections on these subspaces. 

The problem of expressing the r.k. of the sum Fi®F2 of two closed sub- 
spaces in terms of the r.k.'s Kx and K2 of these subspaces is therefore reduced 
to the problem of expressing the projection P on Fx®F2 in terms of the pro- 
jections Pi and Pi on Fi and F2. 

In order to obtain this we shall at first prove the identity 

[(P - P^P - Ps)]- 

(1) m 
w   = p - £P1(P2PI)"-1 + P2(PIP2)"-

1 - (P2PI)
k - (PiP2)k] - (P2PI)

m. 

We shall use the known properties of projections, namely: Px = PiP = PPi 
= P2, P^PtP^PP^H, 
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Pl(P - px) = (P - P1)P1 = 0T      P2(P - Pi) = (P - P*)Pi = o. 

Then, denoting the expression (P —Pi)(P —P2) by Q we have 

QkPl  =  Qk-l(p  _  Pl)(p  _   p2)Pl  =  Q*-l(p  _   pj^  _   pspx) 

= - Q^PiPi + Qk-1PiP2Pi. 

If k>l, the first term is -Qk~2(P-P1)(P-P2)P2Pi = 0, and we have 

QkPl = Qk-ipxP2Pu k> 1. 

For J=lwe obtain 

0Pt = _ p2p1 + P.P^. 

Finally, we obtain by induction 

(2) Q*Pi = - (PjPO* + Pi(P2Pi)*. 

Further, we have 

(3) Ö = (P -Pi)(P - P2) = P - Pi - P2 + P1P2. 

This gives 

Qn = Qn-l(p _  Pl _ p2 _|_ piPj)   = Q^ip _ Q-iPj - Q»-1P2 + Ö"-1PlP2. 

Since <2"-ip = <2"-1, <3"-1P2 = 0, we get from (2) 

Qn   =   Qn-1  _  Qn-iPl  + Qn-lp^ 

= Q"-1 - [-(PsPi)""1 + Pi(P2Pi)"-1] 

+    [-(P2Pl)"-1P2 +   PltPj-Pl)-1^] 

= Q"-1 + {P2P1Y-1 ~ Pi(P2Pi)n-1 - PsiPiP*)"-1 + (PiP2)". 

This expression is valid for n^2. Adding these equations side by side for 
n = m, m — 1, • ■ • , 2, and using the formula for Q given in (3), we obtain 
the required formula for Qm. This formula may be written in the form 

P= [(P - PX)(P - P2)]
m + (P2Pi)m 

^ +   E   [^itfVl) "-1 + ^(PlP2) *"*  -   (P2P1) *  -   (PxP*) *]• 
7f=l 

We shall prove now that for m^<x>, (P2Pi)m converges strongly to the 
projection P0 on the intersection P0 of Pi and P2. In order to do so we shall 
consider the operator L = P2Pi in the space P2- 

In this space L is a positive operator (and therefore symmetric) with 
bound not greater than 1. In fact, for w£P2 

(P2P1M, P2P1U) = !|P2PI«||
2
 ^ I Ml2 = (Pi«, -Pi«) = (-Pi«.«) = (Pi«- p2«) 

= (p2Piw,«) = ||Pi«||2 ^ li«l!2, 
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(5) 0 S (Lu, Lu) S {Lu, u) ^ (u, u). 

Consider now for any /GPthe sequence {Lkf}. For k^l, Lkf = PiPiLk~1f 
EF2. Putting u = Lkf in (5), we get 

0 g (Z*+1/, Lk+J) ^ (£*+!/, L"J) =g (Lkf, L"J), 

0 £ (Z»*+y, Lf) S (La/, Lf) ^ (L™-*f, Lf). 

Consequently the sequence {Lnf, Lf)} is a decreasing sequence of positive 
numbers and therefore it is convergent. This gives 

lim   \\Lmf - i"/||2 = lim [(£»/, Lmf) - (L">f, L'f) 

- (L-/, L-f) + (£"/. £"/)] 

= lim [(L2™"1/, Af) - 2(Z"+-1/, A/") + (i2*"1/. Af)] = 0 

and thus Z>/ converges strongly. This means that Lm converges strongly to 
some bounded operator P0. We have further Lm+lf=LLmf = LmLf, which, for 

m—> °° , gives 

(6) LPof = Po/ = Pol/. 

Therefore LmP0f = P0f and Po/=lim LmP0f = Pof In the subspace P2, Po 
as a limit of symmetric operators is symmetric. Together with P0/ = Po/ it 
shows that in P2 the operator P0 is a projection. It is the projection on the sub- 
space of all Po/. From (6) we get |]P2PiPo/|| =g||PiPof|| ^||Po/|| =||P2PiPo/||. 
Consequently ||PJW|| =||PiPo/|| =||Po/||, P2PiPo/ = PiPo/=Po/ and 
Po/GPo = Prp2. Inversely if u&FvF2, then Lu = P2PiU = u and P0w 
= lim Lnu = u. 

Thus, in P2, Po is the projection on P0. Then for any/GP, we have by (6) 
Po/=P0P/=PoP2Pi/= projection of /on P0. 

In our formula (4), besides the series £ and the term (P2Pi)m we have still 
the expression (P-P:0(P-P2)

m. P- Pi is the projection on P'ePi, andPOP2 

is the projection onP'eP2, if we denote Pi 8 P2 by F'. Consequently for ra-><*> , 
the last expression converges strongly to the projection on the intersection 
0f (p'QFi) and (P'©-P2). But this intersection is reduced to the element 
zero because were there in it any element u^O, it would belong to F' and 
would be orthogonal to Pi as well as to P2. Thus, u would be orthogonal to 
F1@F2 = F' which is impossible. 

In this way we finally obtain the desired formula for the projection P: 

(7) P = P0 + X [P!(P2Pi) ^ + P2(PiP2) K-1 ~ (P2P1)k - (P1P2) *]• 
t=i 

The subspace FX@F2 is defined as the closure of the subspace Pi+P2 

composed of all sums/i+/2,/1G Pi,/2GP>. In general P1 + P2 is not a closed 
subspace. 
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Formula (7) is especially advantageous when P1+P2 is closed and thus 
equal to P' = Pi©P2. 

Let us analyze this case more in detail. It will be convenient to make the 
non-essential assumption that 

(8) Fo = FVF2 = (0),    that is,    P0 = 0. 

The angle between two elements (vectors) fi^O, f^Q is given by 
cos a = Re (/i,/2)/||/]||||/2||. The minimal angle <j>, 0^<£^7r/2, between Pi and 
Ft is given by(10) 

(f   f) 
(9) cos <j> = 1-u.b. Re 7^777 for 0 * f, G Fh 0 ^ /, G F2. 

It is easily seen that, for/iGFi,/2GF2, 

(10) |(/i,/»)|^||/i||||/«||cos0, 

(11) IkiMI ^ H/2II cos<£, ||P2/i|| ^ ll/JI COS0, 

(12) H/x + /,|| ^ ll/xll sin *,        H/i + /2]| ^ ||/2|| sin 0. 

In (12), sin <j> is the greatest constant e=ä0 for which an inequality of 
type ||/i+/2||^c||/i|| is true. By a theorem of H. Kober [l] such inequality 
with c>0 is necessary and sufficient in order that F1 + F2 be closed. 

Consequently, we shall know that F' — Fi+F2 if we prove an inequality 

(13) ||/i + /2|| Ml/4 
with any c>0. Such a constant is necessarily less than or equal to 1 and it 
gives always an evaluation of the minimal angle <j>: 

(14) sin cf> ^ c > 0. 

The angle <j> being positive, the inequalities (11) show that the bounds of 
the operators (P2Pi)n in F2 or (PiP2)

n in Pi are not greater than cos2n4>.Formula 
(7) may now be written in the form 

P = (Pi - P1P2 + P1P2P1 - P1P2P1P2 + • • ■ ) 

+ (P2 - P2P1 + P2P1P2 - P2P1P2P1 + • • • ) 

and the two series are uniformly convergent to the operators Q\ and Q2 which 
give the decomposition of /GF1+F2 in f=QJf+Q2f, QifGFu Q2fG.Fi. 

It should be remarked that the decomposition of the series in (7) into the 
two series (15) is not possible when <j> = 0, as the operators Qi and Q2 are then 
unbounded. 

When the series in (15) are used for computation it is very easy tojfget 

(:0) The notion of a minimal angle between two subspaces seems to have been first intro- 
duced by K. Friedrichs [l]. 
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I 
estimates for the remainder. Usually we shall want to compute, for / and g 
in P, the value of (/, Pg) = (/, Qig) + (f, fe)- It is clear that when we stop in 
the series of & at the nth term Pf = (-l^PiiVi • ■ • , then the remain- 
der i?(in) of this series will be given by 

(16)        R™ = - P™Qa   for odd n,       R™ = - Pi'^Qi   for even n. 

We have similar developments for the second series defining Qz. Conse- 
quently, the error in (/, Qig) (for example when n is odd) is given by (/, R? g) 
= -(P?)*f,Q2g) 

ay) K/^^l^lkr/IIWI. 
By (12) we have ||(fcg|| ^(1/sin 4>)\\g\\. As Pj* is already computed, 

Pf>* is known also and we can compute ||Pf */||. This will give quite a pre- 
cise evaluation of the error. Without knowing P£n) we can evaluate ||PiK)7|| 
g | [/I | cosn~1<j>. 

Even in case <f> = 0 we could still evaluate the error in (/, Pg) if Qig and 
Qig exist and if we can evaluate their norms. 

Still another evaluation of error (preferable as an a priori evaluation), in 
the case <f>>0, is obtained directly from (4): 

m 

P-T,[ ] = [(P - Pt)(P - p*)lm + (^Pi)m- 

It can be proved that the minimal angle of P'OPi and F'Oft is the same 
as between Pi and F2. Consequently 

|j [(P - Pi)(P - P2)]
m|| ^ cos2™-1 4>,       ||(P2Pi)m|| ^ cos2"-1 <£, 

P-Y.I ] < 2 cos2"*-1 4>, 

\ 

where ||    || signifies bounds of operators. 
In case of a sum of more than two subspaces P' = PI©P2©PJ© • • -we 

can still express the projection on F' in terms of projections on Pi, P2, • • ■ , 
but the formula will be much more complicated than in the case of two sub- 
spaces and for this reason may not be as valuable. 

Let us consider now the translation of our formulas in terms of the re- 
producing kernels Ku K2, and K' of the classes Fu F», and P' = Pi©P2. We 
shall suppose that the classes Pi and P2 have no function 5*0 in common, 
that is, PrP2=(0). 

To the projections Pi, P2, P there correspond (in the sense of §11) the 
kernels Ku K2 and K'. To each term in the series (7) or (15) there corresponds 
a kernel given by the following table of correspondence 

P<r+K'(x,y),       Pi++Ki(x,y),       Pz^K2{x,y), 
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PiP2^Ai(x, y) = (£1(2, y), K2(z, x))z, 

P2Pi<->Ai(y, x) = (-ff2(z, y), Ki(z, x))z 

(PiPj)» *-► A„(x, y),        (iVi)" <-> An(y, x), 
where 

I 
A„(x, y) = (Ai(z, y), An-i(x, z))2 = (A„,(z, y), An2(x, z))8,        »1 + «2 = «, 

Pi(P2i
>i)B<->A„ (x, y) = Ai (y, x) = (JTi(z, y), A„(z, x))*, 

P2(PiP2)n^A"(x, y) = A'„' (y, x) = (Z2(z, y), A„(x, z))2. 

Formula (15) can now be written in the form 

K'(x, y) = X) (ALI(X, y) + AK_i(x, y) - AM(x, y) - AK(y, x)) 

(18) 

= X) (ALi(x, y) - An(x, y)) +  X (A«~i(x, y) - A„(y, *)). 

If we use these series to compute K'(x, y) for given points x and y, we 
shall represent it in the form 

K'(x, y) = (Z'(z, y), P,£'(*, *)) = (*(«. y), P.X(z, *)) 

and apply our evaluation of error to this form. 
.13. Final remarks in the general theory. In the present section we 

shall collect a number of shorter remarks about the nature of classes of 
functions with reproducing kernels and of their norms, and concerning some 
relations between the classes and their r.k.'s. 

(A) Classes of functions for which a r.k. exists. (R.K.)-classes. Consider a 
set E and a linear class F of functions defined (and finite) everywhere in E. 
The problem which arises is to find under what circumstances we can de- 
fine a norm in F giving to F the structure of a Hubert space with a r.k. 
For abbreviation we shall call such classes of functions (R.K.)-classes. 

THEOREM I. In order that the class F (not necessarily linear) be contained in a 
(R.K.)-class it is necessary that there exist an increasing sequence of sets 
-E1C.E2C • • • , E = Ei+E2+ ■ ■ ■ , and for each fj*0 of F a positive number 
N(f), so that the functions f(x) /'N(f) be uniformly bounded in each E„. 

In fact if Pi is the (R.K.)-class containing P, || ||i andi^iits norm and 
kernel, we define as E„ the set of all yEE with Ki(y, y)^n and as N(f) the 
norm ||/||i. Then, for each y£En and /GFCPi we have |/(y)[ = | (f(x), 
Ki(x, y))i| ^||/||||ä(X, y)||1 = 7V(/)((X1(y, y))1'2 and \f(y)\/N(f) ^>\ 

The necessary condition of Theorem I is not always satisfied even for an 
enumerable sequence of functions. As an example, consider in the interval 
£=(0, 1) the sequence of functions/„(*) = 1/|x-rn\ for x^r„ and/„(r„) =0. \ 
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Here {rn) is a sequence of numbers everywhere dense in E. By an easy 
topological argument we prove that the sequence of functions /„ does not 
satisfy the condition of Theorem I. 

THEOREM II. For an enumerable sequence {/„(#)} the condition of Theorem 
I is also sufficient in order that this sequence be contained in a {R.K.)-class. 

In fact, consider an upper bound Mm<& for |/„(x)|/N(f), n=l,2,- • ■ , 
x(E.Em. We write 

1 

Clearly, the series is absolutely convergent and represents a p. matrix. 
Each term of it 

1 

\ 

is also a p. matrix and Kn<£K. Theorem I of §7 gives then for the cor- 
responding classes FnCF. Obviously Fn is the one-dimensional class gen- 
erated by/„. Therefore/„£Fand {fn}CF. 

The condition of Theorem I is certainly not sufficient in general. This may 
be shown by a simple set-theoretical argument. Let us consider namely the 
class Fb of all bounded functions on E. We can then take En = E, N(f) 
= l.u.b. \f(x) |. If N is the power of E then the power of a (R.K.)-class F is 
NNo (as the functions K(x, y)=hy(x) form a complete system in F). On the 
other hand, the power of the class Fb is =c^ (c is the power of continuum) 
and for N> No, cK>N*V 

(B) Convergence in classes with reproducing kernels. Consider a class F 
with a r.k. K. We know that if/„ converges strongly to / in F, then it con- 
verges uniformly in every subset of E where K(x, x) is uniformly bounded. 
Therefore the sequence {fn} satisfies the condition 

(1) fn(x)-J>f(x) for every xG£, the convergence being uniform in every set 
of an increasing sequence of sets E1C-E2C • • • with £ = £i+£2+ • • • • 

Consider now the class * of all functions defined in E. In $ we can in- 
troduce a notion of limit as follows: 

(2) f(x) = $-lim/„(#),    if condition (I) is satisfied. 

It is clear that in general the sequence of sets E„ will depend on the 
sequence {/„}. We can now formulate the following theorem. 

THEOREM III. In every class F with a r.k., the strong convergence of fn(x) to 
f(x) involves $-lim/„(x) =/(x). 

It should be noted that the weak convergence in F does not involve in 
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general the ^-convergence. But there are important cases where even weak 
convergence involves «^-convergence. Such cases were considered in §2, (5). 

(C) Relations between (R.K.)-classes and corresponding norms and reproduc- 
ing kernels. To a p. matrix there corresponds a uniquely determined class 
and norm, but to a (R.K)-class there correspond infinitely many norms 
giving to it the structure of a Hubert space with a r.k. Consequently to a 
(R.K.)-class there correspond also infinitely many p. matrices which are 
r.k.'s of the class for convenient norms. 

If the norm || || corresponds to a (R.K.)-class F, the norm || ||i = c|| ||, 
c>0, obviously also corresponds to F and the corresponding r.k.'s K and Ki 
satisfy 

Ki(x, y) = — K{x, y). 

J 

c 

In fact, the scalar product ( , )i is clearly =c2( , ) and thus f(y) 
= (f(x), K{x, y))=c*(f(x), (l/c*)K(x, y)) = (/(x), (l/c*)K(x, y))x. 

We shall now have to apply an important theorem of S. Banach [1 ] in 
the theory of linear transformations. 

Let T be a linear transformation of a linear subspace F' of a complete 
space F on a linear subspace F{ of a complete space Fi. The subspaces F' 
and F{. are not necessarily closed. The transformation T is called closed if 
from {f»}CF',fn-+feF, and Tf^fiGFi follows/G^'./iGF/.and Tf=fi. 

BANACH'S THEOREM. If T is a closed linear transformation of F' on F{, 
F'CF, FlC.Fi, F and Fi complete normed vector spaces and if F' is a closed 
subspace of F, then T is continuous and consequently bounded {that is, there 
exists a M>0 with ||r/||i^ Jf||/||). The image F{ is either = Fi or of first cate- 
gory in Fi. 

Before we apply this theorem we shall prove the following lemma: 

LEMMA. Let Fi and F2 be classes with r.k.'s and let F0 be their intersection 
Fi-F2. The correspondence transforming fCF0 considered as belonging to Fi into 
f considered as belonging to F2 is a closed linear transformation. 

In fact, suppose that {fn}CF0 and that/» converges strongly to/' in 
Fi and to/" in F2. Following Theorem III 

/'(*) = $-lim/„(*) =/"(*). 

Therefore, f'=f"CF0, which proves the lemma. 

THEOREM IV. Let Fand FiCF be (R.K.)-classes and || ||, || ||i some 
norms corresponding to F and F^ Then there exists a constant M>0 such that 
WfW^MWflforfE^. 

In fact the identical transformation of F1 considered as subspace of Fi i 
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on Fi as subspace of F is closed (following the lemma), F± is a closed sub- 
space of Flt and thus our theorem follows immediately from Banach's 
theorem. 

COROLLARY IVI. Let \\ \\ and || ||i be two norms corresponding to the same 
(R.K.)-class F. There exist two positive constants m and M such that w||/|| 
^\\f\\iSM\\f\\,forf£F. 

Theorem IV, together with Theorems I and II from §7 and with the re- 
mark that to norm M\\ || corresponds the kernel (1/M2)K, gives immedi- 
ately the corollaries: 

COROLLARY IV2. Let K and Ki be two p. matrices, F and Fi the corresponding 
classes. In order that F\CF it is necessary and sufficient that there exists a posi- 
tive constant M such that Ki<g.MK. 

COROLLARY IV3. Under the hypotheses of corollary I~V2, in order that Fi = F 
it is necessary and sufficient that there exist two positive constants m and M 
such that mK^K^MK. 

The second part of Banach's theorem together with our lemma leads to 
the following remark which belongs to the subject matter of section (A). 

REMARK. If {Fn} is a strictly increasing sequence of (R.K.)-classes, then 
their sum F= ^,Fn is not a (R.K.)-class. In fact, were there a norm || || 
in F giving it the structure of a Hubert space with r.k., the subspaces Fn(ZF 
would be of first category in F and therefore F would be of first category in 
itself which is impossible. 

(D) Connection with existence domains in a Hubert space. We shall now 
use the notion introduced recently by J. Dixmier [l] of domains of existence 
in a Hubert space. A linear subset of a Hubert space is called a domain of 
existence, d.e., if there exists a closed linear transformation defined in this 
subspace and transforming it into a subspace of another Hubert space (which, 
in particular, may be identical to the first Hubert space). The d.e.'s D in a 

|| may be characterized by the following 
i defined in D giving it the structure of a 

\ 

given Hubert space § with norm 
property: there exists a norm || 
Hubert space and satisfying 

(3) ||ä||I ^ ||A|| for every h G-D- 

In fact, if D is a d.e., then we consider the linear closed transformation 
T of D into a subspace of some Hubert space §', with the norm || ||'. It is 
then clear that the norm ||    ||i defined by 

IIAIIJ-INI' + IW' 
gives D the character of a complete Hubert space which satisfies condition 
(3). 
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On the other hand, suppose tnat a norm ||    ||i is uenneu m u wusiying H 
(3) and giving D the character of a complete Hubert space. Then the cor- ■ 
respondence transforming any element of D, considered as a subspace of §, ■ 
into the same element considered in the Hilbert space D (with norm ||    ||i) ™ 
is obviously a closed transformation and D is therefore a d.e. 

Using Theorem II from §7 and Theorem IV of section (C) we prove now 
immediately the following theorem. 

THEOREM V. If a class of functions F forms a Hilbert space with a reproducing 
kernel, then for any linear subclass FXCF, the necessary and sufficient condition 
in order that Fx be a (R.K.)-class is that Fx be a d.e. in F. 

If we have two classes of functions Fu F2, with reproducing kernels, we 
can combine these two classes in different ways in order to form new classes. 
Let us consider in particular the following classes of functions: F0 = Fi-F2 

and F=FX + F2. 

THEOREM VI. If Fx and F2 are (R.K.)-classes, then the same is true of the 

classes Fx-F2 and Fx-\-F2. 

Proof. The linearity of the classes is obvious. We take firstly the inter- 
section F0. With any norms || ||i and || ||2 corresponding to Fx and F2 we 
define the norm in F0 by the equation 

Ml* = 11/111+ 11* 
This norm clearly defines a quadratic metric in F0 satisfying all the re- 

quired properties. For instance, the completeness of F0 results immediately 
from the lemma of section (C). 

As 11/11 l||/||i for/G^o, Theorem II, §7 gives then the existence of a r.k. 
for F0. 

In the case of the sum, F= Fx + F2, we may apply the theorem of §6 which 
states that Kx and K2 being the r.k.'s with the norms || ||i and || ||2 of Fx 

and Fi, Kx+K2 is the reproducing kernel of our class F. 
Besides the operations of • and +, we can also introduce the direct 

product Fx® F2 as defined in §8 as another operation leading to a (R.K.)-class 
when Fx and F2 are (R.K.)-classes. The class Fi<g> F2 however is defined not in 
E but in the product set EXE. If we take its restriction to the diagonal set 
of all pairs \x, x}, we get a class of functions defined in E. It can be proved 
that this class does not depend on the choice of norms in Fi and F2 as long as 
the norms give to Fi and F2 the structure of a Hilbert space with a r.k. 

PART II. EXAMPLES M 

1. Introductory remarks. In this part we shall give examples showing how ■ 
our general theory may be applied in particular cases and to what kind of re- 
sults it leads. With a few exceptions we will not go into the details of calcula- 
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tion and will not give in explicit form the formulas and relations obtainable 
by our general methods. 

We shall treat essentially two kinds of kernels: the Bergman's kernels 
K{z, Zj.) and the harmonic kernels H{z, z{). 

(1) Bergman's kernels. These kernels correspond to a domain D in the 
space of n complex variables s = (z(1), z(2), ■ • • , sw). We consider the class 
2I=2ID of all analytic regular functions in D with a finite norm given by 

=   C C  . ■ ■   C C l/^1', z<2), ■ • ■ , z<">) \Hx^dy^dx^dy^ ■ ■ ■ dx<-n)dy<-»\ 

where z(w = xw +iy<-k'). 
The class 21 possesses a reproducing kernel K = KD—the Bergman's 

kernel corresponding to D. 
In our examples we shall consider essentially the case of plane domains 

D. UD is multiply-connected we shall consider also the reduced Bergman's 
kernel K'(z, Zi), which is the reproducing kernel of the subspace St' of 21 con- 
sisting of all functions of 21 with a uniform integral f'fdz. If D is of finite con- 
nection n, the complementary subspace 3T0-21' is (« — 1)-dimensional and is 
generated by n functions M>„' (Z) (between which there is the linear relation 
J^Wk = 0) defined in the following way: if Bk, k=l, 2, • ■ • , n, are the 
boundary components of the boundary B of D, w£ is the derivative (which 
is uniform) of the multiform analytic function wk whose real part is the 
harmonic measure Uk of D corresponding to Bh, that is, the harmonic func- 
tion regular in D, equal to 1 on Bk, and vanishing on all the other components 
Bi. 

The functions w{ belong always to 21 and are orthogonal to 21'. We have 
the relation 

K(z, zi) = K'(z, 3i) + ]C djWi (z)wj (Zi), 

where X) is the r.k. of 21-0-21'. Consequently the matrix {c,-y} is definite positive 
(see §3) and it is the conjugate inverse of the Gramm's matrix {(u>/, wj)}. 

Bergman's kernels possess an important property of invariance: in case 
of domains in the space of n variables s(1), • • • , zM, if T represents D pseudo- 
conformatty on D', then 

\ 

KD,{z', z{)dT{z)dT{zl) = KD(z, zi). 

Here, z' = T(z), z{ =T(z{), and dT(z) is the Jacobi determinant of T. In the 
case of domains in the plane, if t(z) represents D conformally on D', this 
formula takes the form 

Xi>'(a',*i')-W(zi) = ^B(Z,ZI). 
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The importance of the Bergman kernels lies in the possibility they offer of 
generalizing different theorems on analytic functions of one complex variable 
to functions of several complex variables (such as Schwarz's lemma, distor- 
tion theorems, representative domains in pseudo-conformal mappings). 

In the case of one variable almost all the important conformal mappings 
are expressible in terms of these kernels. For instance if D is a simply con- 
nected domain, the mapping function f =/(z, z0) which represents D on a circle 
|f] <R in such a way that the point z0£-D goes into f = 0 and f(z0, z0) = 1 is 
given by 

I 

AlZn, Zn)  J «„ K(zo, Zo) 

(2) Harmonic kernels. Consider in a plane domain D (we could consider 
also a domain in w-dimensional space) the class 23=93i> of all regular harmonic 
functions (in general complex-valued) with a finite norm given by 

|A||*=  f C   \h\*dxdy, z = x + iy. 

This class possesses a reproducing kernel which will be denoted by 
H(z, Zl). 

It should be remarked that another harmonic kernel is often considered, 
namely the one which corresponds to the Dirichlet metric 

|A||2=   fj   [K*|2+ \h't\*]dxdy. 

This kernel is easily expressible by Bergman's kernel and consequently 
does not present any additional difficulties to the ones encountered in the 
study and computation of Bergman's kernels. 

The situation is different for the kernel H. Even for very simple domains 
(for instance for a rectangle) there is no known explicit expression of H even 
in the form of an infinite development. (We disregard here the developments 
in terms of a complete non-orthogonal system which are always possible to 
establish for a r.k., but whose coefficients are quotients of determinants of 
growing orders.) 

One reason for the greater difficulty of the investigation of the kernels 
H(z, Zi) as compared to Bergman's kernels lies in the fact that H has no such 
invariancy property vis-ä-vis conformal transformations as have Bergman's 
kernels. 

The interest of the kernel H lies in its connection with the biharmonic 
problem which governs the question of equilibrium of elastic plates. 

The kernel H gives a simple expression for a function w(z) such that 
u = du/dn = 0 on the boundary B of D and AAu = <j> in D, for a given function <£. 1 
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Supposing that we know a function \f? such that A\p = 4> (we can take as \j/ the 
logarithmic potential of 0: \f/(z) = (l/ir)//*D log [ z — z'\<j>(z')dx'dy') we get for 
u the expression (where g is the ordinary Green's function) 

u(z) = -  C f g(z,z')dx'dy'   Hz') ~  f f H(z',z")t(z")dx"dy"\. 

The Green's function gn(z, zi) of the biharmonic problem, satisfying 
AAg/r = 0 for z^zh gn = dgu/dn = 0 on the boundary, is given by 

gn(z, zi) =  I  I  |(z, z')g(z', z^doddy1 

-  fj g(z, z')^/ JJ* #(z', z")g(z", sWdy". 

These formulas were essentially noticed already by S. Zaremba [2]. 
2. Comparison domains. Consider two domains in the plane, D and 

D', DQD'. The kernels KD> or HD>, restricted to the domain D, are reproduc- 
ing kernels of classes 31° or SS° formed by the restrictions of functions from 
Sis- or $SD'- AS any analytic or harmonic function vanishing in D vanishes 
everywhere, any function f0 of 91° or S8° is a restriction of only one function/ 
from 9ID< or 58i>' and, following §5, Part I, the norm j|/oJ|0 = ||/||'. It is then 
clear that every/0E9l° belongs to 2b and that ||/o||0^ ||/o||. 

We can apply Theorem II of §7, I, which gives 

(1) Kl '« KD, El being the res 

In the same way we get 

(2) Hi « ED. 

t 

If the kernel KB is known, we get immediately the well known estimates 
for the kernel KB> : 

(3) KD'{z, Z) g KD(z, Z), \KD'(z, BI) | S (KD(z, z)KD{zh zx))1'2 

for points z and zx belonging to D. 
But the relation (1) (or (2)) allows much better estimates. Suppose that 

the kernel KB> is known. For two points z and Zi in D take domains D" and 
DC such that z£Z>"CA ZiEDC CD and that the kernels KD» and KDi> be 
known (for instance circles). Then, from (1), we get KB(Z, Z)^KB['(.Z, Z), 

KD(ZUZI)^KD"(ZI, ZI), 

| KD(z, zi) — KD'(z, ZI) I2 

(4) gg [KD(z, Z) - KB.(z, z)][KD(zlt zi) - KD.(zlt 2l)] 

g [KD.,(z, z) - KD.{z, z)][KD';(zu 8l) -KB,(ZU *I)]. 
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If we consider a boundary-point t where the boundary has a finite curva- 
ture and if we fix zx and move z towards t, the estimate (3) will grow like 
1/| z — t\. The estimate (4) by a convenient choice of the comparison domains 
D', D", and A" will give a bound for | KD(z, zx) | growing only like 1/| z-t\1/2. 

To show the interest of this improvement, take D simply-connected and 
consider the conformal mapping of D on a circle |f| <R given by 

1        rz 

f =  I    K(z, z0)dz. 
K(zo, so) J zo 

Our problem will be to compute the point T on the circumference | f | =R 
corresponding to t on the boundary B. As the kernel K is not known we 
approximate it by a development in orthogonal functions. This development 
may converge fairly quickly inside the domain but in general it will not 
converge on the boundary and will converge less and less well the nearer we 
come to the boundary. 

To calculate r we have to integrate from z0 to the point t on the boundary. 
We cannot integrate term by term the development of K as it does not con- 
verge on the boundary. What we do then is to find, with the help of the 
estimate (4), a point Zx near t for which the integral J'Zl\K(z, z0)\dz is suffi- 
ciently small. We can integrate the development of K term by term from 
2o to zx and obtain as good an approximation of T as we wish. 

It is clear that with the estimate (3) we would not be able to do this. 
3. The difference of kernels. As we saw in §2, in -DC A, the kernels 

K=KD and Kx=KDl satisfy the relation K^K (the kernel Kx being re- 
stricted to D). To illustrate the developments of §7, I, let us investigate 
the class of functions F2 corresponding to the p. matrix K2 given by 

(1) K2(z, zi) = K(z, zi) - Ki(z, zi) z and zx in D. 

Following the notation in the proof of Theorem II, §7, I (where i7 = 3I, 
F1=%), we introduce the operator L in §1 by 

I 

(2) Lf = /i(zi) = (/, Kx{z, Zl)) = JJ f{z)Kx{z, zx)dxdy. 

If we consider the Hubert space £>i of all functions u(z) in square inte- 
grate in Dx with the norm 

|«||i =   I   I   j u(z) I'dxdy, 

the general property of r.k.'s as projections shows that/i(s), as function in 
Dx, is the projection on SIi of the function/(z) =/(z) in D and =0 in Dx-D. 
Consequently, 

||/l(z)||   ^||/l(s)MII/(*)||l=  11/(2)11- ! 
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The second inequality may become equality for/(z)^0 only in the case 
when Di — D is of two-dimensional measure 0 (for instance when D differs 
from Di only by some slits). We will exclude this case and consequently 

(3) H/iWll = \\Lf\\ < 11/11 forf^O. 

We introduce then the operator V by 

L" = I - L. 

The subspace ^o is here reduced to 0 as 0^f=Lf is impossible in view of 
(3). Therefore F' = F='ä and the only possibilities for the class F2 are: 1°, 
F2 = % or 2°, F2 is a dense subspace of St. 

The first case represents itself always when D is completely interior to 
Z>i (BCDi). In fact, the operator L is then completely continuous. To prove 
this we take a sequence {g<-n)} CSl converging weakly to gGSI- The functions 
|Cn) converge then weakly in |h to g and their projections gi"} on Sli converge 
weakly to gi. But the weak convergence in §li involves unifortneonvergence 
of giK)(z) towards gi(z) in any closed subset of A, in particular in D (see section 
(5), §2, I). When we restrict the functions g(i\z) and gx(z) to D they become 
the transforms Lg(K) and Z,g. Therefore, the uniform convergence of g™ to gi 
in Z> involves the strong convergence of LgM to Lg in the space SI. 

Following our remarks after Theorem III, §7, I, the class i?
2 = ^" = 3f. To 

get the norm ||/||2 corresponding to the kernel K2, we have to find the solution 
g(z) of the equation 

g - Lg = / 

which exists and is unique for every /E2L Then 

ü\l 
where 

i(zi) = Lg= j  I  g(z)Xi(z, zjdxdy. 

I. 

H 

Let us note that the operator L which in general has a bound not greater 
than 1 has here a bound less than 1. 

To illustrate the second case we have to take a domain having common 
boundary points with the boundary of A- It seems probable that for every 
such domain D we shall be in the second case (at least if one of the boundary 
components of D arrives at the boundary of Di). 

To prove that we are in the second case, w£ have to show that the 
operator L has a bound =1. Then L cannot be completely continuous (as the 
bound is not attained). The class F\ is a proper subclass of 21. The class Fi of 
all functions 



390 N. ARONSZAJN [May 

/a(z) = i(z) ~ Si(z)> where Si = L8< S G SI, 

is a proper subspace of F2, dense in i^. For such a function /2, the norm in 
Fi is given by 

llrll2       II   II2       II    II2 

ll/*ll» = 11*11 - Ikilli- 

The class F2 in the metric of 21 is a dense subspace of 31. There are func- 
tions /£8l which do not belong to F2 and for which, a fortiori, the equation 
f=g — Lg has no solution gG2I. (There may be such a solution, analytic in D 
but not in square integrable in D.) 

For two explicitly given domains -DCA, it may not be easy to prove that 
we are in the second case by using the property that the bound of L is 1. 
We can transform this property into another one, more easily proved. 

To this effect we shall consider for any function /i G2U the quotient 

(4) ö(/I) = ||/i||7ll/i||i. 

LEMMA. In order that the bound of L be 1 it is necessary and sufficient that 
there exist functions fi with Q(fi) as near 1 as we wish. 

To prove this lemma we remark firstly that the l.u.b. Q(fi) for/iGSti is 
the same as the l.u.b. Q(Lf) for/GSL In fact the Z/form a dense subspace in 
the space 2Ii (otherwise there would be a giGSIi, gi^O, with (gu Lf)i = 0 for 
every/GSl. Therefore (gu /) = (gi, Z/)i = 0 and g2 = 0 in D which involves 
g! = 0 in Di). Consequently, there is for every /lGSIi a function /£3t with 
H/i-i/lli as small as we wish. As \\fi-Lf\\ g||/,-Z/||i it is clear that Q(Lf) 
will approach Q(fi) as nearly as we wish. 

Now, Q(Lf) can be represented as 

(Lf, Lf)        (Lf, Lf) 
(5) Q(Lf) = 

I 

(Lf.Lfh        (Lf,f) 

Our lemma amounts to the equivalence of the two properties, for any a, 
0< a^l: 

(6') (Lf, Lf) :g a\f, f) for all f G 21, 

(6") {Lf, Lf) ^ a(Lf, f) for all f G 21. 

From (6") follows (6'): 

(Lf, Lf) ^ a(Lf, f) 5S a(Lf, Lf)U*(J,f)w 

(Lf, LfY'l g a(f, fyi\        (Lf, Lf) g «\f, f). 

From (6') follows 

(6'") (Lf,f)^a(f,f) for all f e& * 
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In fact, we have 

(Lfj) ^ (Lf,LfyiUf)in ^ aifjy'Uf)112 = «(/,/)• 

From (6'") follows (6"): we use the fact that L is positive which gives 
(Lf, g)^(Lf,f)U*(Lg, g)1'2. Then 

(Lf, Lf) fg (Lf, f)"\LLf, Lf)"* g (Lf, f)"*a"\Lf, Lf)"*, 

(Lf, Lf)"* ^ a"*(Lf, f)"*,        (Lf, Lf) S a(Lf, f). 

This proves our lemma. 
We shall apply the lemma to two domains DC A having a common 

boundary point which belongs also to the boundary of the exterior of D. We 
suppose further that at this boundary point the boundaries of D and A have 
a common tangent. We can take the common boundary point as the origin 0 
and the inner normal of the boundaries at this point as the positive axis. 

It is then easily verified that the functions 

1 
fn(z)=- —— > K=l,2,   •••, 

(nz + I)1 

for sufficiently great values of n, belong to SIi and that they satisfy the 
asymptotic equation 

II/-H ~||/*||i forn-^*>. 

This shows that the l.u.b. Q(f) — 1 and that we are in the second case. 
Let us consider now another kind of example which we excluded till now. 

Namely, we shall suppose that the domain D differs from Di only by a num- 
ber of slits of finite length. It is then immediately seen that for a function 
/lGSti, considered as belonging to 2ÖC2I (St? = class Sti restricted to D), we 
have 

ll/xll = ll/Jli. 

Consequently 21? is a closed linear subspace of 2f and the kernel K(z, z{) 
— Ki(z, zi) corresponds to the subspace §I-©2I?. 

4. The square of a kernel introduced by Szegö. We shall now give an 
application of Theorem II, §8, I. Consider a domain in the plane with a suffi- 
ciently smooth boundary (for simplicity's sake we may suppose that the 
boundary curves are analytic). For this domain we shall consider a kernel, 
first introduced by Szegö [l], which we shall denote by k(z, zi). This kernel 
corresponds to the class S of all analytic functions which possess in square 
integrable boundary values. As the functions are not necessarily continuous 
on the boundary we have to specify the meaning of the boundary values of 
the functions. We shall suppose that for such a function/(s), its integral 
F(z) is a continuous function in the closed domain (but F(z) may be a multi- 
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form function). Then we suppose that for any two points h, h of the same ^ 
boundary curve the difference F{k) — F(h) may be represented by the integral ■ 

ft2f(t)dt, " 
J ti 

where f{t) is defined almost everywhere on the boundary curves and is in 
square integrable there. The integral is taken over an arc of the boundary 
curve going from h to t%. 

The function f(t) will be considered as the boundary value of f(z) in the 
boundary-point t. f{t) is completely determined by f(z) with exception of a 
boundary set of linear measure zero. The existence of boundary values of 
f(z) in our sense is equivalent to the absolute continuity of F(z) on the 
boundary. With the boundary values taken in this sense we define a norm in 
class S by the equation 

J c. 
\f(t)\>ds, 

where Cv are the boundary curves and ^5 is the element of length on the curve. 
For the functions of class S it is easily proved that the Cauchy theorem is 
still valid in the form 

J c,t — z 

From this it is immediately seen that the class possesses a reproducing 
kernel which is the kernel k(z, z{) introduced by Szegö. Quite recently, in his 
thesis, P. Garabedian [l] proved that 

(1) k'(z, zx) = — K{z, zi) + E on,,*)! (z)wj (si) 
4ir i,j 

where K is the Bergman kernel for the domain and w' are the functions in- 
troduced in §1. 

In cases of simply-connected domains Garabedian's formula takes a very 
simple form, namely: 

1 
k*(z, zi) = — K(z, zi). 

In this case Theorem II, §8,1, gives a property of analytic functions which 
seems to have been unnoticed even for this simple case. Every function f(z) 
in square integrable in the domain D is representable in infinitely many ways 
by a series 

(2)        ., m = D **«**(*) < 
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where the functions <j>k{z) and ^(z) are in square integrable on the boundary. 
In addition, we have the formula 

(3) 4TT f f | f(z) \2dxdy = min ^ E f ^{tWj)ds \ ^k{t)Hfjds, 
J J D k       I    J C J C 

the minimum being extended to all representations of/(z) in the form (2). 
In particular, we have the inequality 

4TT f f  | *(*)*(«) \*dxdy ^   f | <j>(t) \2dsf\ f(t) \2ds. 

In the case of a multiply-connected domain the problem is a little more 
complicated because of the presence of the functions wk. It can be proved 
then that if we replace the Bergman's kernel K by the reduced kernel K' 
(see §1) we have again a formula similar to (1): 

(4) k2(z, *i) = — K'(z, si) + £ ßiM (z^JJzi) 

where, now, the/3»-,.,- are the coefficients of a positive quadratic hermitian form, 
which means that XA.J represents a positive matrix. Consequently, the func- 
tions of the class corresponding to the kernel k2 are sums of functions in 
square integrable in D with a uniform integral (which form the class belonging 
to K') and of a linear combination of the w{ (which form the class cor- 
responding to Ei.y)- The functions w£ are in square integrable in D, and thus 
every function belonging to the class of k2 is in square integrable in D. Con- 
versely, it can be proved that every function in square integrable over D 
belongs to the class of k2. By Theorem II, §8, I, we know that the functions 
belonging to k2 are of the form (2), but we will not be able to obtain a formula 
like (3) for the case of a simply-connected domain. However, a more compli- 
cated formula generalizing (3) does exist. In the present case of a multiply- 
connected domain, we have still the property that the product </>(z)^(z) is in 
square integrable in D if <f> and \p are in square integrable on the boundary, 
but the inequality between the integrals will not be as simple as in the case 
of a simply-connected domain. 

5. The kernel H(z, Zi) for an ellipse. We shall construct the kernel 
H(z, 3i) for the ellipse D 

9 2 

(l) D:    -2 + Ti=1' a>b' a2      oz 

by use of an orthonormal complete system ("). 

(u) The system and the corresponding expression for the kernel were communicated to us 
by A. Erdelyi. It should be noted that the system was already introduced by S. Zaremba [l] 
who also noticed that it is orthogonal and complete in the Dirichlet metric. 
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We write 

(2) a = h cosh e,         b = h sinh e, 

(3) z = x + iy = h cosh f,        f = £ + iij. 

[May 

I 
(3) gives us a conformal transformation of the rectangle R, 0<£<e, 

— ir<r]<ir on the ellipse (1) with the rectilinear slit —a<x<h. Consider in 
the rectangle R the analytic function pn(z) =sinh wf/sinh f (positive integer 
n). It is immediately seen that in the variable z the function is a polynomial 
of degree n — 1. Consequently, all the polynomials in the variable z can be 
expressed as finite linear combinations of these polynomials for n 
= 1, 2, 3, • • • . Since the harmonic polynomials form a complete system in 
our class 33 of harmonic functions, the real and imaginary parts of pn(z) also 
form a complete system. On the other hand, it is easy to verify that these real 
and imaginary parts form an orthogonal system. This verification is made in 
an easy way by performing the integration in the rectangle R instead of the 
domain D. Using the formula 

I  I f(x> y)dxdy = ¥■ I      I      /(#, y) | sinh f \2d^dr] 
J JD Ja   J —T 

one verifies easily that the sequence <f>n(z) defined by 

2 /»V2 

02n-2 = —( — )    (sinh 2m + n sinh 2«)_1/2 Re pn(z),      n = 1, 2, • • • , 
h\TT/ 

2 /w\1/2 

$2n-3 = —( — )    (sinh 2we — n sinh 2e)-1/2 Im £»(z),      n = 2, 3, • • • , 
Ä   \7T/ 

(4) 

is orthonormal. We can then write the kernel of our class in the form 

,      s        4    -      ( Re pn(z) Re #„(«i) Im pn(z) Im ^.fa) ) 
(5)    H(z, zi) = ■— 2^ w<( 1 ( • 

ÄV „=i     (.sinh 2ne + » sinh 2e     sinh 2ne — n smh 2e; 

6. Construction of If(z, zi) for a strip. Our next example will use the 
theorem of the limit of kernels for decreasing sequences of classes (see 
Theorem I, §9, I). It will be at the same time an example of a representation 
of a kernel by use of a resolution of identity in a Hubert space (see §10, I). 
Consider the kernel of §1 and suppose that in the ellipse 

x2      -y2 

—+ —= 1 
a2      b2 

the axis b<a remains fixed, while a—►<». The ellipse in the limit will become 
the horizontal strip \y\ <b. It is clear that our theorem on the limit of 
kernels applies in this case and we get the kernel H(z, z{) for the strip as a 
limit of the kernels corresponding to ellipses. Before performing this passage I 
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to the limit, we shall at first make a few preliminary remarks. 
As in the preceding paragraph, we consider the quantities h and e given by 

b = h sinh e, a = h cosh e, b being fixed and a—>«. We see immediately that 

h—> oo and e—>0 in such a way that he-^b. 
In the conformal mapping, z = h cosh f we introduce a new variable f 

by the equation 
■K 

«f' = f *• 
2 

Then z = A sin ief, and the ellipse with the slit along the real axis going 
from +A to —a is transformed in the rectangle 

3TT 7T 
R„    0 < f < 1,    -—<„'< — • 

2e 2e 

Consider a point z in the horizontal strip \y\ <b. For sufficiently large 
values of h the ellipse will contain z. Suppose that Im z>0, then the cor- 
responding f will lie in the upper half of the rectangle Re and for &—*•», 
f—>z/&*. The point f " =?' —ir*/e will then correspond to the conjugate point 
z, so that (f" +Tri/e)—>zi/b. If we now return to the formula for the kernel 
from §5 and replace the function pn(z) by the expression sinh wf/sinh £", 
then replace f by ef '+wi/2 and separate the series which expresses the kernel 
H (see (5), §5) into parts corresponding to even and odd indices, we can 
write the kernel in the form of a sum of four series: 

COS t»ef COS wzefi' 
Re Re :  

4 11 cos ief cos iefi 

TTA „ odd    h sinh 2M« + n sinh 2« 

cos i»«f'        cos iwef/ 
Im Im — 

4    „,     « cos ief cos Mf i 

A n odd    A sinh 2M« — M sinh 2« 

sin inet'        sin wzef i 
Re Re 

7T 

4    ^     M cos ief' cos iefi' 

5TA n even   A sinh 2M« + M sinh 2« 

sin ine{' sin ine£{ 
Im Im 

* 

4    „,    M cos ief cos ie£i 
'     7   ^—' 

irh n even   A sinh 2M« — M sinh 2e 

For h—> co, if we denote «/Ä by £ and if we then notice the asymptotic formu- 
las he~b, ne~bt, n sin 2e~2&/, it is immediately seen that the series repre- 
sent approximating Riemannian sums for the integrals 
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Re cos ibt? Re cos ibt{{ 2   r °° Im cos ibtf Im cos ib%l 
■it, 

2   c °°  Re cos ibtr Re cos twf f 2   r °° 1m cos *«f im cos i, 
— I    t dt-\ I    t  

7T J o sinh 2bt + 2bt x J 0 sinh 2&jf - 2W 

2   /•»   Re sin iitf' Re sin ib%l 2   /"°   Im sin ibt? Im sin ib%{ 
-4 j    / dt-\ t it, 

■K J o sinh 2bt + 2bt fJo sinh 2U - 2bt 

when we subdivide the infinite interval (0, + °°) into equal intervals of length 
2/h and in each interval take the value of the integrated function in the 
center (for the first two series) or in the right end (for the two last series). 

The convergence of these sums towards the integrals for h—>« is easily 
verified and in this way we obtain for the kernel of the horizontal strip the 
expression given by the above four integrals where we replace .f' and fi by 
the values z/bi and zi/bi: 

2   rx Re cos zt Re cos zxt + Re sin zt Re sin zj 

7T J o sinh 2bt + 2bt 

2   r °° Im cos zt Im cos zit + Im sin zt Im sin Z\t 
_| I       — tit. 

■K J o sinh 2bt — 2&i 

This integral representation of the kernel corresponds to a resolution of 
identity in the Hubert space S3 corresponding to the strip. This resolution of 
identity has a quadruple spectrum (see §10, I) defined by the following four 
functions/*(*, A) :/ft(z,X)=0 for A^0, forX>0 

/- x                              sin zX                               1 — cos z\ 
Re cos ztit = Re — >     /2(z, X) = Re > 

o                                   z                                          z 

sin zX ,      s 1 - cos zX 
/3(z, X) = Im  , fi(z, X) = Im  

z z 

It is easily verified that these functions satisfy the conditions (a) and (b) 
from §10, I. The condition (c') results from the fact that the functions /* 
determine the r.k. H(z, Zi) of the class 58 by the formula above. 

7. Limits of increasing sequences of kernels. In the preceding section 
we had an example of a limit of decreasing sequence of classes and kernels. 
We shall give here'an example of an increasing sequence of kernels. 

Consider the Bergman's kernels Kn for a decreasing sequence of simply- 
connected domains Dn such that Dn+\QDn and £==lim Dn = D1D2- • ■ ■ con- 
sists of the two closed circles Ci: |z-2| gl, and C2: |z+2| gl, with the seg- 
ment of the real axis I: — ISx^l, y = 0. 

Following the general theory of §9, I, we have to consider the set E0 

where K0(z, z) = lim Kn(z, z) < <*>. 
Every point of the open circle Ci belongs to E0. In fact, if Ka) is the Berg- 

man's kernel for &, by the method of comparison domains (see §2) we get 

I 

< 
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Kn<&Ku) in & and consequently K(z, z) =lim K„(z, z) 5Si£(i)(z, Z) for z in G* 
The same is true for z£G- We are going to prove that 

(1) Eo = d + C2. 

We have to show that for z0G.E — E0, lim Kn(z0, z0) = <*>. We use again a 
domain of comparison. We take a closed line L defining an exterior domain 
5 containing E and such that by a convenient translation we can approach 
L as near as we wish to Zo without touching E. The domain 5 will contain all 
Dn from some n onwards. For these n, Kn^>Ks, therefore lim Kn(z0, zo) 
^Ks(zo, zo). The translation of the line L (and the domain S) will have on 
Ks(zo, Zo) the effect as if the domain 5 were fixed and the point zo were moving 
towards the boundary L. As for Bergman's kernels of domains of finite connec- 
tion we have the theorem that K(z, z) goes uniformly to + °° when z ap- 
proaches the boundary (12), we arrive at the result, lim Kn(z0, z0) = + °o. 

For z0£E.E — Eo, with exception of z0= ± 1, we can take as L a sufficiently 
small circumference. For z0= +1, a circumference cannot do. We take then 
for L the boundary of a square, for instance, for z0 = + 1, we take the square: 
—e<x<l—e, e<y<l+e. 

Using the notation of §9, I, (B), we see immediately that the class F0 

with the norm [| ||0 is here a subspace of the class F of all functions/(z) de- 
fined in the two open circles G and G, analytic and regular in each (but /(z) 
in G is not necessarily an analytic continuation of/(z) in G), with a finite 
norm 

=   ff    \f(z)\*dxdy +  f    \f(z)\*dxdy. 

Consequently, the condition 2° of §4, I is satisfied and we obtain a func- 
tional completion F* of F0. Then, it is easily proved, by using general ap- 
proximation theorems of analytic functions, that the space F* coincides with 
F. 

The r.k. of F is immediately seen to be given by: 

K(z, zi) = 0 if z and z\ belong to different circles, 

K(z, zi) = Ka)(z, zi) if z and zi belong to G- 

Similar results can be obtained if the domains Dn, Dn+i(ZDn have an 
arbitrary intersection E = Di-D2- • • • . The set E0 is then the set of all in- 
terior points of E. 

8. Construction of reproducing kernels by the projection-formula of §12, 

(I2) This theorem is proved by using conformal mapping and the invariancy property of 
Bergman's kernels. For the kernels H for which the invariancy property is not true, a similar 
theorem has been proved only for domains with sufficiently smooth boundaries. 
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I. The formula of §12, giving the r.k. of a sum of two closed subspaces, may 
serve in many cases for the construction of kernels. We shall indicate here a 
few cases when it can be applied. 

(1) The expression for H(z, Zi) in terms of K(z, Zi). Consider for a domain 
D in the plane the classes 31 and 23. In spite of the similarity of the metrics in 
the two classes, the relationship between their kernels K and üdoes not seem 
a simple one. We shall get such a relation by using the formula (18), §12, I. 

To this effect we remark firstly that the class S3 is a class of complex 
valued functions, that is, every function h of the class is representable in the 
form h = hi+ihit h and k2 harmonic and real-valued. Consequently, the class 
St is a linear closed subspace of the class 23. Also the class 21 of all antianalytic 
functions (that is, conjugate/(z) of analytic functions/) with a similar norm 
is a closed linear subspace of &■ On the other hand, it is clear that every 
function &£§ is representable as a sum 

with two analytic functions/i and/2. These functions are uniquely determined 
with the exception oj_ additive constants. In general, in this decomposition, 
the functions/i and ./[may be of infinite norm, that is, they may not belong 
to our classes 31 and SI. But when the boundary of D is not too irregular it 
may be proved that a dense jsubclass of 23 is decomposable in this form with 
fi and ft belonging to 31 and 31 which means that 33 = 31® 31. In order_to avoid 
the indetermination of the above decomposition of h&8 into/i+/2 because 
of the additive constant, we shall admit to the class 31 only functions / satis- 
fying the condition 

I  I fdxdy = 0. 

With Si so fixed, the condition 31 • 31 = (0) is satisfied. Consequently, we can 
apply our formula to calculate the kernel H. 

We obtain for H a development of the form 

(1) H(z, Si) = 2 0C-i(z, zi) + An'-i(z, 8i) - An(«, zi) - A»(ai, *)) 

where the A's are expressible in terms of the r.k.'s of 31 and S following the 
formulas from §12. Since the kernel for 21 is K{z, zx), the kernel for 31 is im- 
mediately seen to be K(z, zi)+const. The constant is easy to determine and 
we get for the kernel K of 31 the expression K(z, z1)=K(z1, z)-I/o- where a 
is the area of D. All the terms of the development of H axe then expressible 
by repeated integration in terms of the kernel K alone. 

This development can serve to compute H when K is known. It will be 
especially useful when the domain is such that the subspaces 21 and 31 of 23 

I 

a 
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form a positive minimal angle. This is equivalent to the fact that there exists 
a constant m > 0 such that 

»11/11 ^ 11/ +731 f°r any/e^TiE ¥. 
It is easy to see that the last condition is equivalent to the following prop- 

erty of harmonic, real-valued functions &E93: 

p| | ^ C||ä||, for some constant c > 0, 

where h is the conjugate harmonic function of h (that is, h+ih is analytic). 
This property can be proved for domains with a fairly smooth boundary 
(continuous tangent), with at most a finite number of angular points with 
positive angles (see K. Friedrichs, [l]). Consequently we can apply (1) to 
compute the kernel H for a rectangle, which computation would be espe- 
cially useful in view of applications to rectangular elastic plates. 

(2) We shall describe now a manner of applying our formula to calculate 
the kernels K. 

Let C be a closed set in the plane (not necessarily bounded) of two- 
dimensional measure 0. Usually C will be composed of a finite number of 
arcs or closed curves. C decomposes the plane in a certain number of domains 
D\, D2, • • • which together form an open set D. In D we consider the class of 
functions 3fo formed by all functions which in each of the domains Dn are 
analytic and regular. We call such functions locally analytic and the set C 
their singular set(13). 

We shall suppose further that the functions of Sfa have a finite norm given 
by 

(2) U/112 = jj \f{z)\Hxdy. 

The class §lB possesses a r.k. KD which is simply expressible by the Berg- 
.man's kernels KDn in the following way: 

KD(Z, 2I) = KDn(z, zi) if z and zi belong to Dn, 

KD(Z, ZI) = 0 if z and Zi belong to two different Dn's. 

There is no loss in generality if we suppose that C is bounded (we can 
use conformal mappings to reduce every case to this one). We shall denote 
by Do the domain Dn containing <x>. 

Consider a decomposition of C in two closed sets 

(4) C = C<» + C<2). 

To every C(i) corresponds the complementary open set Z)(i) and we have 

(5) D = DM-DG\ 

(13) The author introduced and investigated this kind of function in his thesis in Paris [2 ]. 
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Every function/(z) locally analytic in D is decomposable into two func- 
tions/(s) =/i(z)+/2(z) each of which is locally analytic in the corresponding 
domain D™ (see N. Aronszajn [2-]). Two such decompositions differ by a 
function with the singular set C(1) • C(2). 

The classes 3b« are clearly linear closed subspaces of 3b (when we restrict 
their functions to the set D). 

The intersection of 3bu> and Sbra is equal to the class 2b« where D* is the 
complementary set of C* = C(1) • C(2). 

The class SID* is reduced to 0 when the intersection C* is a finite or an 

enumerable set. 
The equality 

(6) 3b = Sfo* © 8b» 

is not always true. 
For simplicity's sake we suppose now that C is not equal to 0 and is com- 

posed of a finite number of rectifiable arcs or closed curves, not reduced to 
isolated points, and that the same is true of C(1) and C(2). 

It can then be proved that the necessary and sufficient condition in order 

that (6) be true is that C* = C<» • C'VO. 
Further, if C* = 0, then 2be[2bu>©2bc«] is a one-dimensional space 

generated by the function w'(z) defined as follows: let k(z)=hcm,cb) be the 
locally harmonic function in D, taking the value 1 on C<» and 0 on C<2>. De- 
note then by w(z) the function locally analytic in D (but not necessarily 
single-valued in the multiply-connected components Dn of D), whose real 
part is h(z). The derivative w'(z) =h'x-ih'v is single-valued in D and belongs 
to 2b- h(z) is called the harmonic measure in D corresponding to C(1). 

From what we said, it results that we shall be able to calculate the kernel 
KB by the formulas of §12 in the following cases: 

(1) When CMO and 3b*^0 we can apply the general formula (7), §12, I, 
translating operators into kernels, in particular P, P0, Pi. and P2 into KD, 
KD; IBID, and KDm. To calculate KD we have then to know KD>, KDm, 

and i?i>i2>. 
(2) When C*^0 and 3b« =(0) we can apply formula (18) §12, I. 
This case contains interesting particular cases; for instance in the case of 

a simply-connected domain bounded by a polygonal line C. We can decom- 
pose Cinto one side C<» and a polygonal line C(a having one side less than C. 
This gives an inductive process to calculate the kernel KB of the open set 
complementary to C. By this process we obtain, at the same time, the two 
Bergman's kernels for the interior and exterior of C. This is especially inter- 
esting as these kernels will give the conformal mapping functions of the 

domain on a circle. 
Another case in point is one when to a slit C<» in the plane we add a 

rectilinear segment C<2\ having only one point in common with C<». This 

I 

) 



1950] THEORY OF REPRODUCING KERNELS 401 

case may be of interest for the variational methods, as they were used by 
Loewner [l], for instance, in the problem of coefficients of schlicht functions. 

(3) When C* = 0, then 2b. = 0. We can apply formula (18), §12, I, to com- 
pute the kernel of 2b<1>©2b«!> if KDu and KDe> are known. Then, if we know 
the function w'(z), we add the function (l/\\w'\\2)w'(z)w'(z1) to the obtained 
kernel and arrive at the kernel KD. The classes 2b«> and 2b<» have, in this 
case, a positive minimal angle for which a lower estimate can be obtained 
(using the constant m from the inequality m||/i|| ä=||/i+/2|| as in §12, I) by the 
use of methods developed by the author in [3]. 

If we consider the reduced classes 2li> of functions of 21B with single- 
valued integrals in every component domain Dn of D, we shall obtain a r. k. K'D 

expressible by a formula similar to (3) in terms of the reduced Bergman's 
kernels K'Dn. For the reduced classes we have always % = %<.» ®WD<» and 
in the case C* = 0, we shall calculate K'D directly by formula (18). 
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